Non-Uniform Reductions

We study properties of non-uniform reductions and related completeness notions. We strengthen several results of Hitchcock and Pavan (ICALP (1), Lecture Notes in Computer Science, vol. 4051, pp. 465–476, Springer, 2006) and give a trade-off between the amount of advice needed for a reduction and its honesty on NEXP. We construct an oracle relative to which this trade-off is optimal. We show, in a more systematic study of non-uniform reductions, among other things that non-uniformity can be removed at the cost of more queries. In line with Post’s program for complexity theory (Buhrman and Torenvliet in Bulletin of the EATCS 85, pp. 41–51, 2005) we connect such ‘uniformization’ properties to the separation of complexity classes.

[1]  A. Selman,et al.  Complexity theory retrospective II , 1998 .

[2]  Juris Hartmanis,et al.  On Isomorphisms and Density of NP and Other Complete Sets , 1977, SIAM J. Comput..

[3]  Eric Allender,et al.  Power from random strings , 2002, The 43rd Annual IEEE Symposium on Foundations of Computer Science, 2002. Proceedings..

[4]  Lance Fortnow,et al.  Separating Complexity Classes Using Autoreducibility , 2000, SIAM J. Comput..

[5]  Elvira Mayordomo Almost Every Set in Exponential Time is P-bi-Immune , 1994, Theor. Comput. Sci..

[6]  Harry Buhrman,et al.  An Excursion to the Kolmogorov Random Strings , 1997, J. Comput. Syst. Sci..

[7]  Ingo Wegener,et al.  Complexity Theory , 2005 .

[8]  Klaus Ambos-Spies P-mitotic sets , 1983, Logic and Machines.

[9]  Harry Buhrman,et al.  Separating complexity classes using structural properties , 2004, Proceedings. 19th IEEE Annual Conference on Computational Complexity, 2004..

[10]  Manindra Agrawal,et al.  Polynomial isomorphism of 1-L-complete sets , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[11]  Edith Hemaspaandra,et al.  The relative power of logspace and polynomial time reductions , 2005, computational complexity.

[12]  Steven Homer,et al.  Complete Problems and Strong Polynomial Reducibilities , 1992, SIAM J. Comput..

[13]  Juris Hartmanis,et al.  One-Way Functions and the Nonisomorphism of NP-Complete Sets , 1991, Theor. Comput. Sci..

[14]  John M. Hitchcock,et al.  Hardness Hypotheses, Derandomization, and Circuit Complexity , 2008, computational complexity.

[15]  Osamu Watanabe,et al.  A Comparison of Polynomial Time Completeness Notions , 1987, Theor. Comput. Sci..

[16]  Manindra Agrawal,et al.  Pseudo-random generators and structure of complete degrees , 2002, Proceedings 17th IEEE Annual Conference on Computational Complexity.

[17]  A. S. Zamanakos Bits of information , 1958, Transactions of the American Institute of Electrical Engineers, Part I: Communication and Electronics.

[18]  John M. Hitchcock,et al.  Comparing Reductions to NP-Complete Sets , 2006, ICALP.

[19]  Steven Homer,et al.  Computability and Complexity Theory , 2001, Texts in Computer Science.

[20]  Stuart A. Kurtz,et al.  The isomorphism conjecture fails relative to a random oracle , 1995, JACM.

[21]  Stuart A. Kurtz,et al.  On A-Truth-Table-Hard Languages , 1993, Theor. Comput. Sci..

[22]  Harry Buhrman,et al.  Completeness for nondeterministic complexity classes , 2005, Mathematical systems theory.

[23]  Steven Homer,et al.  Oracles for structural properties: the isomorphism problem and public-key cryptography , 1989, [1989] Proceedings. Structure in Complexity Theory Fourth Annual Conference.

[24]  Eric Allender Isomorphisms and 1-L Reductions , 1988, J. Comput. Syst. Sci..

[25]  Sebastiaan Terwijn,et al.  Resource Bounded Randomness and Weakly Complete Problems , 1997, Theor. Comput. Sci..

[26]  Juris Hartmanis,et al.  On isomorphisms and density of NP and other complete sets , 1976, STOC '76.

[27]  Edith Hemaspaandra,et al.  Bounded Reductions , 1991, Complexity Theory: Current Research.

[28]  Stuart A. Kurtz,et al.  The ismorphism conjecture fails relative to a random oracle , 1989, STOC '89.

[29]  Paul Young,et al.  Juris Hartmanis: fundamental contributions to isomorphism problems , 1988, [1988] Proceedings. Structure in Complexity Theory Third Annual Conference.

[30]  Harry Buhrman,et al.  Complicated complementations , 1999, Proceedings. Fourteenth Annual IEEE Conference on Computational Complexity (Formerly: Structure in Complexity Theory Conference) (Cat.No.99CB36317).

[31]  Richard J. Lipton,et al.  Some connections between nonuniform and uniform complexity classes , 1980, STOC '80.

[32]  Lance Fortnow,et al.  Using autoreducibility to separate complexity classes , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[33]  Stuart A. Kurtz,et al.  The Isomorphism Conjecture Holds Relative to an Oracle , 1996, SIAM J. Comput..

[34]  Harry Buhrman,et al.  A Post's Program for Complexity Theory , 2005, Bull. EATCS.

[35]  Nancy A. Lynch,et al.  Comparison of polynomial-time reducibilities , 1974, STOC '74.

[36]  Christian Glaßer,et al.  Non-mitotic sets , 2009, Theor. Comput. Sci..

[37]  Eric Allender,et al.  Kolmogorov complexity and derandomization , 2004 .

[38]  José L. Balcázar,et al.  Structural Complexity I , 1995, Texts in Theoretical Computer Science An EATCS Series.

[39]  John M. Hitchcock,et al.  Comparing reductions to NP-complete sets , 2006, Inf. Comput..

[40]  Mark W. Krentel The Complexity of Optimization Problems , 1988, J. Comput. Syst. Sci..