Automatic Configuration of a Multi-objective Local Search for Imbalanced Classification

[1]  Laetitia Vermeulen-Jourdan,et al.  Automatic Configuration of Multi-Objective Local Search Algorithms for Permutation Problems , 2019, Evolutionary Computation.

[2]  Laetitia Vermeulen-Jourdan,et al.  Survey and unification of local search techniques in metaheuristics for multi-objective combinatorial optimisation , 2018, Journal of Heuristics.

[3]  Heike Trautmann,et al.  MO-ParamILS: A Multi-objective Automatic Algorithm Configuration Framework , 2016, LION.

[4]  Laetitia Vermeulen-Jourdan,et al.  Conception of a dominance-based multi-objective local search in the context of classification rule mining in large and imbalanced data sets , 2015, Appl. Soft Comput..

[5]  Laetitia Vermeulen-Jourdan,et al.  The benefits of using multi-objectivization for mining pittsburgh partial classification rules in imbalanced and discrete data , 2013, GECCO '13.

[6]  T. Stützle,et al.  The Automatic Design of Multiobjective Ant Colony Optimization Algorithms , 2012, IEEE Transactions on Evolutionary Computation.

[7]  Francisco Herrera,et al.  Genetics-Based Machine Learning for Rule Induction: State of the Art, Taxonomy, and Comparative Study , 2010, IEEE Transactions on Evolutionary Computation.

[8]  Haibo He,et al.  Learning from Imbalanced Data , 2009, IEEE Transactions on Knowledge and Data Engineering.

[9]  María José del Jesús,et al.  KEEL: a software tool to assess evolutionary algorithms for data mining problems , 2008, Soft Comput..

[10]  Isabelle Guyon,et al.  Design and Analysis of the Causation and Prediction Challenge , 2008, WCCI Causation and Prediction Challenge.

[11]  Foster J. Provost,et al.  Learning When Training Data are Costly: The Effect of Class Distribution on Tree Induction , 2003, J. Artif. Intell. Res..

[12]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[13]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[14]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..