Large displacement and rotational formulation for laminated shells including parabolic transverse shear

Abstract The paper presents an approach for a general laminated shell geometry describable by orthogonal curvilinear coordinates. The theory includes a through-the-thickness parabolic distribu- tion of transverse shear stress.-Additionally, a simplified approach that allows large displacements and rotations is incorporated. The theory is cast into a displacement-based finite element formula- tion and then specialized to a cylindrical shell geometry. The theory is then applied to the problem of a transversely loaded isotropic deep arch, and results show a slightly more flexible response compared with published results that are based upon inextensible assumptions. This problem also indicates that the usual locking associated with shell elements is apparently eliminated.

[1]  M. Levinson,et al.  An accurate, simple theory of the statics and dynamics of elastic plates , 1980 .

[2]  F. John Estimates for the derivatives of the stresses in a thin shell and interior shell equations , 1965 .

[3]  N. Pagano,et al.  Exact Solutions for Composite Laminates in Cylindrical Bending , 1969 .

[4]  Anthony N. Palazotto,et al.  Transverse shear deformation in orthotropic cylindrical pressure vessels using a higher-order shear theory , 1989 .

[5]  J. M. Kennedy,et al.  SIMPLE TRIANGULAR CURVED SHELL ELEMENT FOR COLLAPSE ANALYSIS. , 1984 .

[6]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[7]  Some New Developments in the Foundations of Shell Theory. , 1968 .

[8]  Stanley B. Dong,et al.  On the Theory of Laminated Anisotropic Shells and Plates , 1962 .

[9]  J. N. Reddy,et al.  A refined mixed shear flexible finite element for the nonlinear analysis of laminated plates , 1986 .

[10]  J. N. Reddy,et al.  Analysis of laminated composite plates using a higher‐order shear deformation theory , 1985 .

[11]  Ahmed K. Noor,et al.  Shear-Flexible Finite-Element Models of Laminated Composite Plates and Shells. , 1975 .

[12]  E. Reissner,et al.  Small bending and stretching of sandwich-type shells , 1977 .

[13]  Sundaramoorthy Rajasekaran,et al.  Incremental Finite Element Matrices , 1973 .

[14]  J. Heicklen Gas-phase chemistry of re-entry. , 1967 .

[15]  Liviu Librescu,et al.  Refined geometrically nonlinear theories of anisotropic laminated shells , 1987 .

[16]  W. T. Koiter Foundations and Basic Equations of Shell Theory A Survey of Recent Progress , 1969 .

[17]  Robert Schmidt,et al.  Instability of Clamped-Hinged Circular Arches Subjected to a Point Load , 1975 .

[18]  J. Whitney,et al.  Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .

[19]  J. N. Reddy,et al.  A higher-order shear deformation theory of laminated elastic shells , 1985 .

[20]  J. N. Reddy,et al.  A comparison of closed-form and finite-element solutions of thick laminated anisotropic rectangular plates , 1981 .

[21]  L. A. Schmit,et al.  A cylindrical shell discrete element. , 1967 .

[22]  Shun Cheng,et al.  Theory of Orthotropic and Composite Cylindrical Shells, Accurate and Simple Fourth-Order Governing Equations , 1984 .

[23]  Arturs Kalnins,et al.  Introduction to the Theory of Thin Shells , 1983 .

[24]  A. Bhimaraddi,et al.  A higher order theory for free vibration analysis of circular cylindrical shells , 1984 .

[25]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[26]  Y. Stavsky,et al.  Elastic wave propagation in heterogeneous plates , 1966 .

[27]  Alavandi Bhimaraddi Generalized analysis of shear deformable rings and curved beams , 1988 .

[28]  K. Surana Geometrically nonlinear formulation for the curved shell elements , 1983 .

[29]  A. K. Noor,et al.  Nonlinear analysis of anisotropic panels , 1986 .

[30]  P. M. Naghdi,et al.  ON THE THEORY OF THIN ELASTIC SHELLS , 1957 .

[31]  N. Pagano,et al.  Exact Solutions for Rectangular Bidirectional Composites and Sandwich Plates , 1970 .

[32]  J. N. Reddy,et al.  Geometrically nonlinear transient analysis of laminated composite plates , 1983 .

[33]  H. Saunders,et al.  Finite element procedures in engineering analysis , 1982 .

[34]  J. Reddy A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .

[35]  A. Palazotto,et al.  Formulation of a nonlinear compatible finite element for the analysis of laminated composites , 1985 .

[36]  F. B. Hildebrand,et al.  Notes on the foundations of the theory of small displacements of orthotropic shells , 1949 .

[37]  R. D. Mindlin,et al.  Influence of rotary inertia and shear on flexural motions of isotropic, elastic plates , 1951 .

[38]  J. Ren,et al.  Exact solutions for laminated cylindrical shells in cylindrical bending , 1987 .

[39]  Anthony N. Palazotto,et al.  Nonlinear finite element analysis of thick composite plates using cubic spline functions , 1985 .

[40]  J. Reddy,et al.  Stability and vibration of isotropic, orthotropic and laminated plates according to a higher-order shear deformation theory , 1985 .

[41]  K. Chandrashekhara,et al.  Nonlinear analysis of laminated shells including transverse shear strains , 1985 .

[42]  O. C. Zienkiewicz,et al.  A generalized displacement method for the finite element analysis of thin shells , 1985 .

[43]  T. Y. Yang,et al.  High Order Rectangular Shallow Shell Finite Element , 1973 .

[44]  L. A. Schmit,et al.  SYNOPTIC: Finite Deflection Discrete Element Analysis of Sandwich Plates and Cylindrical Shells with Laminated Faces , 1970 .

[45]  E. Reissner The effect of transverse shear deformation on the bending of elastic plates , 1945 .

[46]  C. Bert Structural Theory for Laminated Anisotropic Elastic Shells , 1967 .

[47]  M. Stein,et al.  Nonlinear theory for plates and shells including the effects of transverse shearing , 1986 .

[48]  K. Washizu Variational Methods in Elasticity and Plasticity , 1982 .

[49]  Robert E. Fulton,et al.  Accuracy and Convergence of Finite Element Approximations , 1968 .

[50]  K. Surana A generalized geometrically nonlinear formulation with large rotations for finite elements with rotational degrees of freedoms , 1986 .

[51]  J. Hutchinson,et al.  Buckling of Bars, Plates and Shells , 1975 .

[52]  K. A. Meroueh ON A FORMULATION OF A NONLINEAR THEORY OF PLATES AND SHELLS WITH APPLICATIONS , 1986 .

[53]  J. V. Huddleston Finite Deflections and Snap-Through of High Circular Arches , 1968 .

[54]  Rüdiger Schmidt,et al.  Refined theories of elastic anisotropic shells accounting for small strains and moderate rotations , 1988 .

[55]  R. Cook,et al.  Concepts and Applications of Finite Element Analysis , 1974 .

[56]  J. N. Reddy,et al.  Exact Solutions of Moderately Thick Laminated Shells , 1984 .

[57]  Ahmed K. Noor,et al.  Stability of multilayered composite plates , 1975 .