Enhanced Néel temperature in Mn ferrite nanoparticles linked to growth-rate-induced cation inversion

Mn ferrite (MnFe(2)O(4)) nanoparticles, having diameters from 4 to 50 nm, were synthesized using a modified co-precipitation technique in which mixed metal chloride solutions were added to different concentrations of boiling NaOH solutions to control particle growth rate. Thermomagnetization measurements indicated an increase in Néel temperature corresponding to increased particle growth rate and particle size. The Néel temperature is also found to increase inversely proportionally to the cation inversion parameter, delta, appearing in the formula (Mn(1-delta)Fe(delta))(tet)[Mn(delta)Fe(2-delta)](oct)O(4). These results contradict previously published reports of trends between Néel temperature and particle size, and demonstrate the dominance of cation inversion in determining the strength of superexchange interactions and subsequently Néel temperature in ferrite systems. The particle surface chemistry, structure, and magnetic spin configuration play secondary roles.

[1]  T. Shinjo,et al.  Neutron Diffraction of Manganese Ferrite Prepared from Aqueous Solution , 1967 .

[2]  B. Ravel,et al.  MULTIEDGE REFINEMENT OF EXTENDED X-RAY-ABSORPTION FINE STRUCTURE OF MANGANESE ZINC FERRITE NANOPARTICLES , 2002 .

[3]  Fan Yang,et al.  Manganese ferrite grown at the atomic scale , 2004, IEEE Transactions on Magnetics.

[4]  A. Gennaro,et al.  Mössbauer study of Mn-Zn spinel ferrites prepared by a wet chemical method , 1982 .

[5]  C. Vittoria,et al.  Cation engineering of Cu-ferrite films deposited by alternating target laser ablation deposition , 2008 .

[6]  C. Vittoria,et al.  Magnetism, Structure, and Cation Disbribution in MnFe2O4 Films Processed by Conventional and Alternating Target Laser Ablation Deposition , 2006 .

[7]  C. Vittoria,et al.  Magnetic and structural properties of pulsed laser deposited CuFe2O4 films , 2005 .

[8]  V. Harris,et al.  Direct measurement of octahedral and tetrahedral site environments in NiZn-ferrites , 1995 .

[9]  M. Pileni,et al.  Nonstoichiometric Zinc Ferrite Nanocrystals: Syntheses and Unusual Magnetic Properties , 2000 .

[10]  J. Greneche,et al.  Spin Canting in γ-Fe2O3 Nanoparticles , 1998 .

[11]  S. Gider,et al.  Magnetic Clusters in Molecular Beams, Metals, and Semiconductors , 1996, Science.

[12]  Chen,et al.  Size-dependent magnetic properties of MnFe2O4 fine particles synthesized by coprecipitation. , 1996, Physical review. B, Condensed matter.

[13]  Johnson,et al.  Comment on "Particle-size effects on the value of TC of MnFe2O4: Evidence for finite-size scaling" , 1995, Physical review. B, Condensed matter.

[14]  V. Harris,et al.  Processing and cation redistribution of MnZn ferrites via high-energy ball milling , 1998 .

[15]  K. Nakatsuka,et al.  Mixed spinel structure in nanocrystalline NiFe 2 O 4 , 2001 .

[16]  C. Vittoria,et al.  Effect of growth temperature on the magnetic, microwave, and cation inversion properties on NiFe2O4 thin films deposited by pulsed laser ablation deposition , 2007 .

[17]  E. E. Carpenter,et al.  Synthesis of ferrite and nickel ferrite nanoparticles using radio-frequency thermal plasma torch , 2002 .

[18]  E. E. Carpenter,et al.  USE OF MULTIPLE-EDGE REFINEMENT OF EXTENDED X-RAY ABSORPTION FINE STRUCTURE TO DETERMINE SITE OCCUPANCY IN MIXED FERRITE NANOPARTICLES , 2002 .

[19]  E. E. Carpenter,et al.  Estimating crystallite size in polydispersed samples using EXAFS , 2005 .

[20]  S. Malik,et al.  X-ray absorption, neutron diffraction, and Mössbauer effect studies of MnZn–ferrite processed through high-energy ball milling , 1999 .

[21]  M. McHenry,et al.  Experimental observations and nucleation and growth theory of polyhedral magnetic ferrite nanoparticles synthesized using an RF plasma torch , 2006 .

[22]  Johnson,et al.  Comment on "Size-dependent Curie temperature in nanoscale MnFe2O4 particles" , 1992, Physical review letters.

[23]  C. Vittoria,et al.  CATION-DISORDER-ENHANCED MAGNETIZATION IN PULSED-LASER-DEPOSITED CUFE2O4 FILMS , 2005 .

[24]  D. Mitchell MR imaging contrast agents — what's in a name? , 1997, Journal of magnetic resonance imaging : JMRI.

[25]  J. Coey Noncollinear Spin Arrangement in Ultrafine Ferrimagnetic Crystallites , 1971 .

[26]  Kevin Robbie,et al.  Nanomaterials and nanoparticles: Sources and toxicity , 2007, Biointerphases.

[27]  K. Chattopadhyay,et al.  Grain size effect on the Néel temperature and magnetic properties of nanocrystalline NiFe2O4 spinel , 2002 .

[28]  M. McHenry,et al.  Structure and magnetic properties of rf thermally plasma synthesized Mn and Mn-Zn ferrite nanoparticles , 2003 .

[29]  Rao,et al.  Particle-size effects on the value of Tc of MnFe2O4: Evidence for finite-size scaling. , 1994, Physical review. B, Condensed matter.

[30]  A. Navrotsky,et al.  Size-Driven Structural and Thermodynamic Complexity in Iron Oxides , 2008, Science.

[31]  Tang,et al.  Size-dependent Curie temperature in nanoscale MnFe2O4 particles. , 1991, Physical review letters.

[32]  Everett E. Carpenter,et al.  Magnetic and structural properties of nickel zinc ferrite nanoparticles synthesized at room temperature , 2004 .

[33]  Y. Bandō,et al.  NMR Determination of Metal Ion Distribution in Manganese Ferrite Prepared from Aqueous Solution , 1967 .

[34]  Zhong Lin Wang,et al.  Temperature Dependence of Cation Distribution and Oxidation State in Magnetic Mn-Fe Ferrite Nanocrystals , 1998 .

[35]  J. Greneche,et al.  Magnetic properties of nanostructured ferrimagnetic zinc ferrite , 2000 .

[36]  T. Satō,et al.  Magnetization of cadmium ferrite prepared by coprecipitation , 1996 .

[37]  J. Ho,et al.  Large zinc cation occupancy of octahedral sites in mechanically activated zinc ferrite powders , 2000 .

[38]  D. Fiorani,et al.  Surface-related properties of γ-Fe2O3 nanoparticles , 2000 .

[39]  G. Samara,et al.  Effect of Pressure on the Néel Temperature of Magnetite , 1969 .

[40]  J. Greneche,et al.  Néel temperature enhancement in nanostructured nickel zinc ferrite , 2005 .

[41]  M Newville,et al.  ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. , 2005, Journal of synchrotron radiation.

[42]  C. Vittoria,et al.  Extended X-ray absorption fine structure analysis of cation distribution in MnFe/sub 2/O/sub 4/ single crystal films and artificial ferrite structures , 2004, IEEE Transactions on Magnetics.

[43]  V. Harris,et al.  Cation distribution in NiZn‐ferrite films via extended x‐ray absorption fine structure , 1996 .

[44]  C. Vittoria,et al.  Element- and site-specific oxidation state and cation distribution in manganese ferrite films by diffraction anomalous fine structure , 2008 .

[45]  E. E. Carpenter,et al.  Chemically prepared magnetic nanoparticles , 2004 .

[46]  C. Vittoria,et al.  Large induced magnetic anisotropy in manganese spinel ferrite films , 2005 .

[47]  R. Street,et al.  MAGNETIC PROPERTIES OF ULTRAFINE MNFE2O4 POWDERS PREPARED BY MECHANOCHEMICAL PROCESSING , 2001 .

[48]  Urs O. Häfeli,et al.  Scientific and clinical applications of magnetic carriers , 1997 .

[49]  C. Vittoria,et al.  Size dependent magnetic properties and cation inversion in chemically synthesized MnFe2O4 nanoparticles , 2007 .