(Ultra) Precise Astrometry today and tomorrow, with Next-generation Observatories

High precision astrometry provides the foundation to resolve many fundamental problems in astrophysics. The application of astrometric studies spans a wide range of fields, and has undergone enormous growth in recent years. This is as a consequence of the increasing measurement precision and wide applicability, which is due in turn to the development of new techniques. Forthcoming next generation observatories have the potential to further increase the astrometric precision, providing there is a matching improvement in the methods to correct for systematic errors. The EVN and other observatories are providing demonstrations of these and are acting as pathfinders for next-generation telescopes such as the SKA and ngVLA. We will review the perspectives for the coming facilities and examples of the current state-of-the-art for astrometry.

[1]  Sang-Sung Lee,et al.  Relativistic Jets as Compact Radio Sources , 2014 .

[2]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[3]  C. L. Carilli,et al.  Tropospheric phase calibration in millimeter interferometry , 1999 .

[4]  Yoshiharu Asaki,et al.  Phase compensation experiments with the paired antennas method , 1996 .

[5]  A VLBI resolution of the Pleiades distance controversy , 2014, Science.

[6]  M. J. Reid,et al.  Microarcsecond Radio Astrometry , 2013, 1312.2871.

[7]  VLBI observations of weak sources using fast frequency switching , 2004, astro-ph/0412564.

[8]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[9]  Richard Dodson,et al.  THE POWER OF SIMULTANEOUS MULTIFREQUENCY OBSERVATIONS FOR mm-VLBI: ASTROMETRY UP TO 130 GHz WITH THE KVN , 2015, 1509.02621.

[10]  Osawa,et al.  The Synergy between VLBI and Gaia astrometry , 2019, Proceedings of 14th European VLBI Network Symposium & Users Meeting — PoS(EVN2018).

[11]  S. Frey,et al.  MultiView High Precision VLBI Astrometry at Low Frequencies , 2016, Proceedings of the International Astronomical Union.

[12]  M. Reid,et al.  Tropospheric Delay Calibrations for VERA , 2008 .

[13]  Tao An,et al.  Very Long Baseline Interferometry with the SKA , 2014, 1412.5971.

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Stephanie Thalberg,et al.  Interferometry And Synthesis In Radio Astronomy , 2016 .

[16]  Gino Tuccari,et al.  BRAND - the next generation receiver for VLBI , 2019 .

[17]  K. Menten,et al.  The local spiral structure of the Milky Way , 2016, Science Advances.

[18]  Richard Dodson,et al.  Investigations on MultiView VLBI for SKA , 2019, Proceedings of 14th European VLBI Network Symposium & Users Meeting — PoS(EVN2018).

[19]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[20]  K. Menten,et al.  Mapping spiral structure on the far side of the Milky Way , 2017, Science.

[21]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[22]  Richard Dodson,et al.  HIGH-PRECISION ASTROMETRIC MILLIMETER VERY LONG BASELINE INTERFEROMETRY USING A NEW METHOD FOR ATMOSPHERIC CALIBRATION , 2011, 1101.2051.

[23]  T. Sasao,et al.  Revisited "Cluster-Cluster" VLBI with future multi-beam low frequency radio interferometers , 2009 .

[24]  K. Menten,et al.  Techniques for Accurate Parallax Measurements for 6.7 GHz Methanol Masers , 2017, 1706.03128.

[25]  F. J. Abellán,et al.  Core-shifts and proper-motion constraints in the S5 polar cap sample at the 15 and 43 GHz bands , 2018, Astronomy & Astrophysics.

[26]  Sang-Sung Lee,et al.  VERIFICATION OF THE ASTROMETRIC PERFORMANCE OF THE KOREAN VLBI NETWORK, USING COMPARATIVE SFPR STUDIES WITH THE VLBA AT 14/7 mm , 2014, 1407.4604.

[27]  S. Tingay,et al.  Very High Angular Resolution Science with the SKA , 2011 .

[28]  R. Porcas,et al.  VLBI observations in Cluster-Cluster mode at 1.6 GHz , 2002, astro-ph/0207210.

[29]  R. Dodson,et al.  HIGH-PRECISION ASTROMETRIC MILLIMETER VERY LONG BASELINE INTERFEROMETRY USING A NEW METHOD FOR MULTI-FREQUENCY CALIBRATION , 2016, 1612.02958.

[30]  Y. Kovalev,et al.  A quantitative analysis of systematic differences in the positions and proper motions of Gaia DR2 with respect to VLBI , 2018, Monthly Notices of the Royal Astronomical Society.

[31]  K. L. J. Rygl,et al.  TRIGONOMETRIC PARALLAXES OF HIGH MASS STAR FORMING REGIONS: THE STRUCTURE AND KINEMATICS OF THE MILKY WAY , 2014, 1401.5377.

[32]  P. Goldsmith,et al.  A Millimeter-Wave Quasi-Optical Circuit for Compact Triple-Band Receiving System , 2017 .

[33]  Do-Young Byun,et al.  Korean VLBI Network Receiver Optics for Simultaneous Multifrequency Observation: Evaluation , 2013 .

[34]  Yoshiharu Asaki,et al.  Verification of the Effectiveness of VSOP-2 Phase Referencing with a Newly Developed Simulation Tool, ARIS , 2007, 0707.0558.