Homoclinic solutions for Swift-Hohenberg and suspension bridge type equations

We establish the existence of homoclinic solutions for a class of fourth-order equations which includes the Swift Hohenberg model and the suspension bridge equation. In the first case, the nonlinearity has three zeros, corresponding to a double-well potential, while in the second case the nonlinearity is asymptotically constant on one side. The Swift Hohenberg model is a higher-order extension of the classical Fisher Kolmogorov model. Its more complicated dynamics give rise to further possibilities of pattern formation. The suspension bridge equation as studied by Chen and McKenna (J. Differential Equations 136 (1997), 325-355): we give a positive answer to an open question raised by the authors. (C) 2002 Elsevier Science (USA).

[1]  J. Kwapisz,et al.  Homotopy Classes for Stable Periodic and Chaotic¶Patterns in Fourth-Order Hamiltonian Systems , 2000 .

[2]  G. J. van den Berg,et al.  Stable patterns for fourth-order parabolic equations , 2002 .

[3]  Y. Chen,et al.  Traveling Waves in a Nonlinearly Suspended Beam: Theoretical Results and Numerical Observations , 1997 .

[4]  J. Kwapisz Uniqueness of the Stationary Wave for the Extended Fisher-Kolmogorov Equation , 2000 .

[5]  William D. Kalies,et al.  MULTITRANSITION HOMOCLINIC AND HETEROCLINIC SOLUTIONS OF THE EXTENDED FISHER-KOLMOGOROV EQUATION , 1996 .

[6]  P. Hartman Ordinary Differential Equations , 1965 .

[7]  B. Buffoni Periodic and homoclinic orbits for Lorentz-Lagrangian systems via variational methods , 1996 .

[8]  J. Kwapisz,et al.  Homotopy Classes for Stable Connections between Hamiltonian Saddle-Focus Equilibria , 1998 .

[9]  William C. Troy,et al.  Spatial patterns described by the extended Fisher-Kolmogorov equation: periodic solutions , 1997 .

[10]  Jan Bouwe van den Berg,et al.  The Phase-plane Picture for a Class of Fourth-order Conservative Differential Equations , 2000 .

[11]  M. Karlsson,et al.  Radiationless optical solitons with oscillating tails , 1994 .

[12]  William C. Troy,et al.  A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation , 1995 .

[13]  M. Willem Minimax Theorems , 1997 .

[14]  William C. Troy,et al.  Pulse-like Spatial Patterns Described by Higher-Order Model Equations☆ , 1998 .

[15]  J. Swift,et al.  Hydrodynamic fluctuations at the convective instability , 1977 .

[16]  L. A. Peletier,et al.  Global Branches of Multi-Bump Periodic Solutions of the Swift-Hohenberg Equation , 2001 .

[17]  Mark A. Peletier,et al.  Centrum Voor Wiskunde En Informatica Reportrapport Sequential Buckling: a Variational Analysis Sequential Buckling: a Variational Analysis , 2022 .

[18]  Alan R. Champneys,et al.  Bifurcation and coalescence of a plethora of homoclinic orbits for a Hamiltonian system , 1996 .

[19]  Louis Jeanjean,et al.  On the existence of bounded Palais–Smale sequences and application to a Landesman–Lazer-type problem set on ℝN , 1999, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  William C. Troy,et al.  Chaotic Spatial Patterns Described by the Extended Fisher–Kolmogorov Equation , 1996 .

[21]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[22]  J. Toland,et al.  Bounded Palais-Smale mountain-pass sequences , 1998 .

[23]  L. Peletier,et al.  Multibump periodic travelling waves in suspension bridges , 1998, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[24]  Closed characteristics of fourth-order twist systems via braids , 2000 .

[25]  Michael Struwe,et al.  The existence of surfaces of constant mean curvature with free boundaries , 1988 .

[26]  W. Walter,et al.  Travelling waves in a suspension bridge , 1990 .