Laser trapping of colloidal metal nanoparticles.

Optical trapping using focused laser beams (laser tweezers) has been proven to be extremely useful for contactless manipulation of a variety of small objects, including biological cells, organelles within cells, and a wide range of other dielectric micro- and nano-objects. Colloidal metal nanoparticles have drawn increasing attention in the field of optical trapping because of their unique interactions with electromagnetic radiation, caused by surface plasmon resonance effects, enabling a large number of nano-optical applications of high current interest. Here we try to give a comprehensive overview of the field of laser trapping and manipulation of metal nanoparticles based on results reported in the recent literature. We also discuss and describe the fundamentals of optical forces in the context of plasmonic nanoparticles, including effects of polarization, optical angular momentum, and laser heating effects, as well as the various techniques that have been used to trap and manipulate metal nanoparticles. We conclude by suggesting possible directions for future research.

[1]  Theobald Lohmüller,et al.  Optical injection of gold nanoparticles into living cells. , 2015, Nano letters.

[2]  Gnanaprakash Dharmalingam,et al.  Thermal energy harvesting plasmonic based chemical sensors. , 2014, ACS nano.

[3]  M. Marqués Beam configuration proposal to verify that scattering forces come from the orbital part of the Poynting vector. , 2014, Optics letters.

[4]  N. Scherer,et al.  Optical Printing of Electrodynamically Coupled Metallic Nanoparticle Arrays , 2014 .

[5]  L. Oddershede,et al.  Optical Trapping of Nanoparticles and Quantum Dots , 2014, IEEE Journal of Selected Topics in Quantum Electronics.

[6]  A. Urban,et al.  Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. , 2014, Nanoscale.

[7]  Takuya Iida,et al.  Selective Optical Assembly of Highly Uniform Nanoparticles by Doughnut-Shaped Beams , 2013, Scientific Reports.

[8]  Mikael Käll,et al.  Plasmonic particles set into fast orbital motion by an optical vortex beam. , 2014, Optics express.

[9]  Hongxing Xu,et al.  Nanogaps for SERS applications , 2014 .

[10]  R. Quidant,et al.  Three-dimensional manipulation with scanning near-field optical nanotweezers. , 2013, Nature nanotechnology.

[11]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[12]  Zijie Yan,et al.  Why single-beam optical tweezers trap gold nanowires in three dimensions. , 2013, ACS nano.

[13]  Kishan Dholakia,et al.  Laser-induced breakdown of an optically trapped gold nanoparticle for single cell transfection. , 2013, Optics letters.

[14]  M. Fedoruk,et al.  Nanolithography by plasmonic heating and optical manipulation of gold nanoparticles. , 2013, ACS nano.

[15]  Norbert F. Scherer,et al.  Optical Vortex Induced Rotation of Silver Nanowires , 2013 .

[16]  M. Fedoruk,et al.  Two-color laser printing of individual gold nanorods. , 2013, Nano letters.

[17]  Peter Nordlander,et al.  Compact solar autoclave based on steam generation using broadband light-harvesting nanoparticles , 2013, Proceedings of the National Academy of Sciences.

[18]  Mikael Käll,et al.  Ultrafast spinning of gold nanoparticles in water using circularly polarized light. , 2013, Nano letters.

[19]  A. Lutich,et al.  Tuning DNA binding kinetics in an optical trap by plasmonic nanoparticle heating. , 2013, Nano letters.

[20]  Zhi-yuan Li,et al.  The properties of gold nanospheres studied with dark field optical trapping. , 2013, Optics express.

[21]  Wenqi Zhu,et al.  Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity. , 2013, Nano letters.

[22]  Peter Nordlander,et al.  Solar vapor generation enabled by nanoparticles. , 2013, ACS nano.

[23]  L. Oddershede,et al.  Mapping 3D focal intensity exposes the stable trapping positions of single nanoparticles. , 2013, Nano letters.

[24]  Alexandre G. Brolo,et al.  Plasmonics for future biosensors , 2012, Nature Photonics.

[25]  Ernst-Ludwig Florin,et al.  Ultrastrong optical binding of metallic nanoparticles. , 2012, Nano letters.

[26]  Li-Gang Wang Optical forces on submicron particles induced by full Poincaré beams. , 2012, Optics express.

[27]  Norbert F. Scherer,et al.  Three-dimensional optical trapping and manipulation of single silver nanowires. , 2012, Nano letters.

[28]  A. Lutich,et al.  Enhancing single-nanoparticle surface-chemistry by plasmonic overheating in an optical trap. , 2012, Nano letters.

[29]  Pavel Zemánek,et al.  Optical alignment and confinement of an ellipsoidal nanorod in optical tweezers: a theoretical study. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[30]  W. Köhler,et al.  Optical funneling and trapping of gold colloids in convergent laser beams. , 2012, ACS nano.

[31]  Arvind Balijepalli,et al.  Significantly improved trapping lifetime of nanoparticles in an optical trap using feedback control. , 2012, Nano letters.

[32]  T. Čižmár,et al.  Bidirectional optical sorting of gold nanoparticles. , 2012, Nano letters.

[33]  K. Dholakia,et al.  Optical trapping for analytical biotechnology. , 2012, Current opinion in biotechnology.

[34]  Light spin forces in optical traps: comment on "Trapping metallic Rayleigh particles with radial polarization". , 2012, Optics express.

[35]  Takuya Iida,et al.  Control of Plasmonic Superradiance in Metallic Nanoparticle Assembly by Light-Induced Force and Fluctuations. , 2012, The journal of physical chemistry letters.

[36]  Sailing He,et al.  Measurement of viscosity of lyotropic liquid crystals by means of rotating laser-trapped microparticles. , 2011, Optics express.

[37]  Mikael Käll,et al.  Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well. , 2011, Nano letters.

[38]  Jochen Feldmann,et al.  Optical force stamping lithography. , 2011, Nano letters.

[39]  Mikael Käll,et al.  A bimetallic nanoantenna for directional colour routing , 2011, Nature communications.

[40]  N. Scherer,et al.  Plasmon-driven selective deposition of au bipyramidal nanoparticles. , 2011, Nano letters.

[41]  M. Fedoruk,et al.  Subdiffraction-limited milling by an optically driven single gold nanoparticle. , 2011, ACS nano.

[42]  Paul V. Ruijgrok,et al.  Brownian fluctuations and heating of an optically aligned gold nanorod. , 2011, Physical review letters.

[43]  Harald Giessen,et al.  Three-Dimensional Plasmon Rulers , 2011, Science.

[44]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[45]  Miles J. Padgett,et al.  Tweezers with a twist , 2011 .

[46]  Steven M Block,et al.  Optical tweezers study life under tension. , 2011, Nature photonics.

[47]  A. Lutich,et al.  Optothermal escape of plasmonically coupled silver nanoparticles from a three-dimensional optical trap. , 2011, Nano letters.

[48]  Moreno Meneghetti,et al.  Manipulation and Raman Spectroscopy with Optically Trapped Metal Nanoparticles Obtained by Pulsed Laser Ablation in Liquids , 2011 .

[49]  L. Oddershede,et al.  Heat profiling of three-dimensionally optically trapped gold nanoparticles using vesicle cargo release. , 2011, Nano letters.

[50]  L. Novotný,et al.  Antennas for light , 2011 .

[51]  Moreno Meneghetti,et al.  Plasmon-enhanced optical trapping of gold nanoaggregates with selected optical properties. , 2011, ACS nano.

[52]  Yuqiang Jiang,et al.  Nonlinear optical effects in trapping nanoparticles with femtosecond pulses , 2010 .

[53]  A. Urban,et al.  Laser printing single gold nanoparticles. , 2010, Nano letters.

[54]  N. Scherer,et al.  All-optical patterning of Au nanoparticles on surfaces using optical traps. , 2010, Nano letters.

[55]  Giorgio Volpe,et al.  Unidirectional Emission of a Quantum Dot Coupled to a Nanoantenna , 2010, Science.

[56]  Xiang Zhang,et al.  Light-driven nanoscale plasmonic motors. , 2010, Nature nanotechnology.

[57]  M. Raizen,et al.  Measurement of the Instantaneous Velocity of a Brownian Particle , 2010, Science.

[58]  L. Oddershede,et al.  Direct measurements of heating by electromagnetically trapped gold nanoparticles on supported lipid bilayers. , 2010, ACS nano.

[59]  H. Atwater,et al.  Plasmonics for improved photovoltaic devices. , 2010, Nature materials.

[60]  Borja Sepúlveda,et al.  Optical Forces in Plasmonic Nanoparticle Dimers , 2010 .

[61]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[62]  S. Reihani,et al.  Optimized optical trapping of gold nanoparticles. , 2010, Optics express.

[63]  Mikael Käll,et al.  Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. , 2010, Nano letters.

[64]  Yoshito Tanaka,et al.  Laser-induced self-assembly of silver nanoparticles via plasmonic interactions. , 2009, Optics express.

[65]  P. G. Gucciardi,et al.  Rotation detection in light-driven nanorotors. , 2009, ACS nano.

[66]  G. Badenes,et al.  Simple Route for Preparing Optically Trappable Probes for Surface-Enhanced Raman Scattering , 2009 .

[67]  J. Rädler,et al.  Controlled nanometric phase transitions of phospholipid membranes by plasmonic heating of single gold nanoparticles. , 2009, Nano letters.

[68]  Ethan Schonbrun,et al.  Propulsion of gold nanoparticles with surface plasmon polaritons: evidence of enhanced optical force from near-field coupling between gold particle and gold film. , 2009, Nano letters.

[69]  Rosalba Saija,et al.  Optical trapping calculations for metal nanoparticles. Comparison with experimental data for Au and Ag spheres. , 2009, Optics express.

[70]  Yoshito Y. Tanaka,et al.  Surface Enhanced Raman Scattering from Pseudoisocyanine on Ag Nanoaggregates Produced by Optical Trapping with a Linearly Polarized Laser Beam , 2009 .

[71]  N. Scherer,et al.  Plasmonic interactions and optical forces between au bipyramidal nanoparticle dimers. , 2009, The journal of physical chemistry. A.

[72]  Juan José Sáenz,et al.  Scattering forces from the curl of the spin angular momentum of a light field. , 2009, Physical review letters.

[73]  D. Erickson,et al.  Forces and transport velocities for a particle in a slot waveguide. , 2009, Nano letters.

[74]  Romain Quidant,et al.  Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. , 2009, Lab on a chip.

[75]  Younan Xia,et al.  Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? , 2009, Angewandte Chemie.

[76]  Reversal of the optical force in a plasmonic trap. , 2008, Optics letters.

[77]  Olaf Schubert,et al.  Quantitative optical trapping of single gold nanorods. , 2008, Nano letters.

[78]  M. Dickinson,et al.  Nanometric optical tweezers based on nanostructured substrates , 2008 .

[79]  R. Tang,et al.  Electrodynamics study of plasmonic bonding and antibonding forces in a bisphere , 2008 .

[80]  L. Novotný,et al.  Van der Waals versus optical interaction between metal nanoparticles. , 2008, Optics letters.

[81]  Thomas Aabo,et al.  Efficient optical trapping and visualization of silver nanoparticles. , 2008, Nano letters.

[82]  Kishan Dholakia,et al.  Optical vortex trap for resonant confinement of metal nanoparticles. , 2008, Optics express.

[83]  Hongxing Xu,et al.  Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam , 2008 .

[84]  D. Mills,et al.  Electromagnetic response of nanosphere pairs : Collective plasmon resonances, enhanced fields, and laser-induced forces , 2008 .

[85]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[86]  Kishan Dholakia,et al.  Optical micromanipulation. , 2008, Chemical Society reviews.

[87]  Prashant K. Jain,et al.  Plasmonic photothermal therapy (PPTT) using gold nanoparticles , 2008, Lasers in Medical Science.

[88]  P Guyot-Sionnest,et al.  Plasmon resonance-based optical trapping of single and multiple Au nanoparticles. , 2007, Optics express.

[89]  D. Mills,et al.  Laser-induced forces in metallic nanosystems: the role of plasmon resonances. , 2007, Physical review letters.

[90]  Kristian Helmerson,et al.  Optical trapping of nanoshells , 2007, SPIE NanoScience + Engineering.

[91]  Norman R. Heckenberg,et al.  Optical tweezers computational toolbox , 2007 .

[92]  L. Oddershede,et al.  Optimizing immersion media refractive index improves optical trapping by compensating spherical aberrations. , 2007, Optics letters.

[93]  J. Fédéli,et al.  Polarization and particle size dependence of radiative forces on small metallic particles in evanescent optical fields. Evidences for either repulsive or attractive gradient forces. , 2007, Optics express.

[94]  Romain Quidant,et al.  Enhanced optical forces between coupled resonant metal nanoparticles. , 2007, Optics letters.

[95]  R. V. Van Duyne,et al.  Localized surface plasmon resonance spectroscopy and sensing. , 2007, Annual review of physical chemistry.

[96]  V. Wong,et al.  Size dependence of gradient and nongradient optical forces in silver nanoparticles , 2007 .

[97]  Fredrik Svedberg,et al.  Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. , 2006, Nano letters.

[98]  Mark A. Ratner,et al.  Explicit computation of gradient and nongradient contributions to optical forces in the discrete-dipole approximation , 2006 .

[99]  T. Perkins,et al.  Gold nanoparticles: enhanced optical trapping and sensitivity coupled with significant heating. , 2006, Optics letters.

[100]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods by using plasmon resonances. , 2006 .

[101]  Romain Quidant,et al.  Tunable optical sorting and manipulation of nanoparticles via plasmon excitation. , 2006, Optics letters.

[102]  M. Käll,et al.  On the importance of optical forces in surface-enhanced Raman scattering (SERS). , 2006, Faraday discussions.

[103]  Adam M. Schwartzberg,et al.  Optical trapping and light-induced agglomeration of gold nanoparticle aggregates , 2006 .

[104]  Efficient in-depth trapping with an oil-immersion objective lens. , 2006, Optics letters.

[105]  Mark A. Ratner,et al.  Gradient and nongradient contributions to plasmon-enhanced optical forces on silver nanoparticles , 2006 .

[106]  B. Hecht,et al.  Principles of nano-optics , 2006 .

[107]  L. Oddershede,et al.  Expanding the optical trapping range of gold nanoparticles. , 2005, Nano letters.

[108]  Carsten Sönnichsen,et al.  A molecular ruler based on plasmon coupling of single gold and silver nanoparticles , 2005, Nature Biotechnology.

[109]  L. Brus,et al.  Optical forces between metallic particles. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[110]  G. Schatz,et al.  Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. , 2005, The journal of physical chemistry. B.

[111]  Hiroshi Masuhara,et al.  Reversible assembly of gold nanoparticles confined in an optical microcage. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[112]  E. Hutter,et al.  Exploitation of Localized Surface Plasmon Resonance , 2004 .

[113]  Q. Zhan Trapping metallic Rayleigh particles with radial polarization. , 2004, Optics express.

[114]  H. Metcalf,et al.  Laser Cooling and Trapping of Neutral Atoms , 2004 .

[115]  Mattias Goksör,et al.  Optical Spectroscopy of Single Trapped Metal Nanoparticles in Solution , 2004 .

[116]  M. Nieto-Vesperinas,et al.  Optical forces on small particles: attractive and repulsive nature and plasmon-resonance conditions. , 2003, Journal of the Optical Society of America. A, Optics, image science, and vision.

[117]  Hongxing Xu,et al.  Surface-plasmon-enhanced optical forces in silver nanoaggregates. , 2002, Physical review letters.

[118]  Raoul Kopelman,et al.  Optical trapping near resonance absorption. , 2002, Applied optics.

[119]  P. C. Chaumet,et al.  Optical binding of particles with or without the presence of a flat dielectric surface , 2001, physics/0305045.

[120]  Miles J. Padgett,et al.  Three-dimensional optical confinement of micron-sized metal particles and the decoupling of the spin and orbital angular momentum within an optical spanner , 2000 .

[121]  James S. Wilkinson,et al.  Manipulation of colloidal gold nanoparticles in the evanescent field of a channel waveguide , 2000 .

[122]  J. Lyklema,et al.  DLVO-theory : a dynamic re-interpretation , 1999 .

[123]  H. Rubinsztein-Dunlop,et al.  Optical alignment and spinning of laser-trapped microscopic particles , 1998, Nature.

[124]  W. Phillips Nobel Lecture: Laser cooling and trapping of neutral atoms , 1998 .

[125]  A. Ashkin Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime. , 1992, Methods in cell biology.

[126]  H. Rubinsztein-Dunlop,et al.  Optical angular-momentum transfer to trapped absorbing particles. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[127]  Toshimitsu Asakura,et al.  Radiation forces on a dielectric sphere in the Rayleigh scattering regime , 1996 .

[128]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[129]  J. Golovchenko,et al.  Optical Matter: Crystallization and Binding in Intense Optical Fields , 1990, Science.

[130]  J. P. Barton,et al.  Theoretical determination of net radiation force and torque for a spherical particle illuminated by a focused laser beam , 1989 .

[131]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[132]  P. Waterman,et al.  SYMMETRY, UNITARITY, AND GEOMETRY IN ELECTROMAGNETIC SCATTERING. , 1971 .

[133]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .