Linear transforms for Fourier data on the sphere: Application to high angular resolution diffusion MRI of the brain

This paper presents a novel family of linear transforms that can be applied to data collected from the surface of a 2-sphere in three-dimensional Fourier space. This family of transforms generalizes the previously-proposed Funk-Radon Transform (FRT), which was originally developed for estimating the orientations of white matter fibers in the central nervous system from diffusion magnetic resonance imaging data. The new family of transforms is characterized theoretically, and efficient numerical implementations of the transforms are presented for the case when the measured data is represented in a basis of spherical harmonics. After these general discussions, attention is focused on a particular new transform from this family that we name the Funk-Radon and Cosine Transform (FRACT). Based on theoretical arguments, it is expected that FRACT-based analysis should yield significantly better orientation information (e.g., improved accuracy and higher angular resolution) than FRT-based analysis, while maintaining the strong characterizability and computational efficiency of the FRT. Simulations are used to confirm these theoretical characteristics, and the practical significance of the proposed approach is illustrated with real diffusion weighted MRI brain data. These experiments demonstrate that, in addition to having strong theoretical characteristics, the proposed approach can outperform existing state-of-the-art orientation estimation methods with respect to measures such as angular resolution and robustness to noise and modeling errors.

[1]  Frithjof Kruggel,et al.  A Reproducing Kernel Hilbert Space Approach for Q-Ball Imaging , 2011, IEEE Transactions on Medical Imaging.

[2]  Mariano Rivera,et al.  Diffusion Basis Functions Decomposition for Estimating White Matter Intravoxel Fiber Geometry , 2007, IEEE Transactions on Medical Imaging.

[3]  Rodney A. Kennedy,et al.  Quadratic Variational Framework for Signal Design on the 2-Sphere , 2011, IEEE Transactions on Signal Processing.

[4]  Luc Florack,et al.  A New Tensorial Framework for Single-Shell High Angular Resolution Diffusion Imaging , 2010, Journal of Mathematical Imaging and Vision.

[5]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[6]  P. Basser Diffusion MRI: From Quantitative Measurement to In vivo Neuroanatomy , 2009 .

[7]  P. Hagmann,et al.  Mapping complex tissue architecture with diffusion spectrum magnetic resonance imaging , 2005, Magnetic resonance in medicine.

[8]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[9]  Ronald N. Bracewell,et al.  The Fourier Transform and Its Applications , 1966 .

[10]  D. Parker,et al.  Analysis of partial volume effects in diffusion‐tensor MRI , 2001, Magnetic resonance in medicine.

[11]  Yihong Yang,et al.  How accurately can the diffusion profiles indicate multiple fiber orientations? A study on general fiber crossings in diffusion MRI. , 2006, Journal of magnetic resonance.

[12]  Chun-Hung Yeh,et al.  Resolving crossing fibres using constrained spherical deconvolution: Validation using diffusion-weighted imaging phantom data , 2008, NeuroImage.

[13]  H. Pfeifer Principles of Nuclear Magnetic Resonance Microscopy , 1992 .

[14]  Rachid Deriche,et al.  Deterministic and Probabilistic Tractography Based on Complex Fibre Orientation Distributions , 2009, IEEE Transactions on Medical Imaging.

[15]  Carl-Fredrik Westin,et al.  Tensor kernels for simultaneous fiber model estimation and tractography , 2010, Magnetic resonance in medicine.

[16]  Kaleem Siddiqi,et al.  Recent advances in diffusion MRI modeling: Angular and radial reconstruction , 2011, Medical Image Anal..

[17]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[18]  A. Macovski,et al.  Selection of a convolution function for Fourier inversion using gridding [computerised tomography application]. , 1991, IEEE transactions on medical imaging.

[19]  A. Anderson Measurement of fiber orientation distributions using high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[20]  B W Kreher,et al.  Multitensor approach for analysis and tracking of complex fiber configurations , 2005, Magnetic resonance in medicine.

[21]  Paul M. Thompson,et al.  Mesh-based spherical deconvolution: A flexible approach to reconstruction of non-negative fiber orientation distributions , 2010, NeuroImage.

[22]  Luc Brun,et al.  Efficient and robust computation of PDF features from diffusion MR signal , 2009, Medical Image Anal..

[23]  L. Frank Characterization of anisotropy in high angular resolution diffusion‐weighted MRI , 2002, Magnetic resonance in medicine.

[24]  K. Tabelow,et al.  Modeling the orientation distribution function by mixtures of angular central Gaussian distributions , 2012, Journal of Neuroscience Methods.

[25]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[26]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[27]  T. Mareci,et al.  Generalized diffusion tensor imaging and analytical relationships between diffusion tensor imaging and high angular resolution diffusion imaging , 2003, Magnetic resonance in medicine.

[28]  Valerij G. Kiselev,et al.  Fiber Continuity: An Anisotropic Prior for ODF Estimation , 2011, IEEE Transactions on Medical Imaging.

[29]  Baba C. Vemuri,et al.  A novel tensor distribution model for the diffusion-weighted MR signal , 2007, NeuroImage.

[30]  Yogesh Rathi,et al.  On Approximation of Orientation Distributions by Means of Spherical Ridgelets , 2008, IEEE Transactions on Image Processing.

[31]  Justin P. Haldar,et al.  New linear transforms for data on a Fourier 2-sphere with application to diffusion MRI , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[32]  Alan Barnett,et al.  Theory of Q‐ball imaging redux: Implications for fiber tracking , 2009, Magnetic resonance in medicine.

[33]  Thomas R. Knösche,et al.  Parametric spherical deconvolution: Inferring anatomical connectivity using diffusion MR imaging , 2007, NeuroImage.

[34]  Fang-Cheng Yeh,et al.  Generalized ${ q}$-Sampling Imaging , 2010, IEEE Transactions on Medical Imaging.

[35]  Baba C. Vemuri,et al.  Resolution of complex tissue microarchitecture using the diffusion orientation transform (DOT) , 2006, NeuroImage.

[36]  Carl-Fredrik Westin,et al.  A new methodology for the estimation of fiber populations in the white matter of the brain with the Funk–Radon transform , 2010, NeuroImage.

[37]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[38]  Guy B. Williams,et al.  Inference of multiple fiber orientations in high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[39]  J. Mangin,et al.  New diffusion phantoms dedicated to the study and validation of high‐angular‐resolution diffusion imaging (HARDI) models , 2008, Magnetic resonance in medicine.

[40]  Fang-Cheng Yeh,et al.  Estimation of fiber orientation and spin density distribution by diffusion deconvolution , 2011, NeuroImage.

[41]  Manbir Singh,et al.  Independent component analysis‐based multifiber streamline tractography of the human brain , 2010, Magnetic resonance in medicine.

[42]  D. Tuch,et al.  Boosting the sampling efficiency of q‐ball imaging using multiple wavevector fusion , 2007, Magnetic resonance in medicine.

[43]  Martha Elizabeth Shenton,et al.  Directional functions for orientation distribution estimation , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[44]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[45]  Mariano Jose Juan Rivera Meraz Diffusion Basis Functions Decomposition for Estimating White Matter Intravoxel Fiber Geometry , 2007 .

[46]  Willi Freeden,et al.  Spherical Functions of Mathematical Geosciences: A Scalar, Vectorial, and Tensorial Setup , 2008, Geosystems Mathematics.

[47]  Timothy Edward John Behrens,et al.  Diffusion MRI : from quantitative measurement to in vivo neuroanatomy , 2014 .

[48]  Yihong Yang,et al.  Mapping the orientation of intravoxel crossing fibers based on the phase information of diffusion circular spectrum , 2004, NeuroImage.

[49]  M. Moseley,et al.  In vivo generalized diffusion tensor imaging (GDTI) using higher‐order tensors (HOT) , 2010, Magnetic resonance in medicine.

[50]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[51]  Daniel C. Alexander,et al.  Multiple Fibers: Beyond the Diffusion Tensor , 2013 .

[52]  Erick Jorge Canales-Rodríguez,et al.  Mathematical description of q‐space in spherical coordinates: Exact q‐ball imaging , 2009, Magnetic resonance in medicine.

[53]  Chun-Hung Yeh,et al.  Diffusion orientation transform revisited , 2010, NeuroImage.

[54]  Carl-Fredrik Westin,et al.  Geometrically constrained two-tensor model for crossing tracts in DWI. , 2006, Magnetic resonance imaging.

[55]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[56]  Maxime Descoteaux,et al.  Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom , 2011, NeuroImage.

[57]  Norbert Schuff,et al.  Improved diffusion imaging through SNR‐enhancing joint reconstruction , 2013, Magnetic resonance in medicine.

[58]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[59]  Nathan Intrator,et al.  Variational multiple-tensor fitting of fiber-ambiguous diffusion-weighted magnetic resonance imaging voxels. , 2008, Magnetic resonance imaging.

[60]  G. Sapiro,et al.  Reconstruction of the orientation distribution function in single‐ and multiple‐shell q‐ball imaging within constant solid angle , 2010, Magnetic resonance in medicine.

[61]  M. Moseley,et al.  Magnetic Resonance in Medicine 51:924–937 (2004) Characterizing Non-Gaussian Diffusion by Using Generalized Diffusion Tensors , 2022 .

[62]  Andrew L. Alexander,et al.  Hybrid diffusion imaging , 2007, NeuroImage.

[63]  D. Tuch Diffusion MRI of complex tissue structure , 2002 .

[64]  Li-Wei Kuo,et al.  Optimization of diffusion spectrum imaging and q-ball imaging on clinical MRI system , 2008, NeuroImage.

[65]  Baba C. Vemuri,et al.  Regularized positive-definite fourth order tensor field estimation from DW-MRI , 2009, NeuroImage.

[66]  Paul M. Thompson,et al.  The tensor distribution function , 2008, 2008 5th IEEE International Symposium on Biomedical Imaging: From Nano to Macro.

[67]  Hans-Peter Seidel,et al.  Estimating Crossing Fibers: A Tensor Decomposition Approach , 2008, IEEE Transactions on Visualization and Computer Graphics.

[68]  Carl-Fredrik Westin,et al.  Estimation of fiber Orientation Probability Density Functions in High Angular Resolution Diffusion Imaging , 2009, NeuroImage.

[69]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[70]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[71]  Lester Melie-García,et al.  A Bayesian framework to identify principal intravoxel diffusion profiles based on diffusion-weighted MR imaging , 2008, NeuroImage.