Optimal quantum multiparameter estimation and application to dipole- and exchange-coupled qubits

We consider the problem of quantum multi-parameter estimation with experimental constraints and formulate the solution in terms of a convex optimization. Specifically, we outline an efficient method to identify the optimal strategy for estimating multiple unknown parameters of a quantum process and apply this method to a realistic example. The example is two electron spin qubits coupled through the dipole and exchange interactions with unknown coupling parameters -- explicitly, the position vector relating the two qubits and the magnitude of the exchange interaction are unknown. This coupling Hamiltonian generates a unitary evolution which, when combined with arbitrary single-qubit operations, produces a universal set of quantum gates. However, the unknown parameters must be known precisely to generate high-fidelity gates. We use the Cram\'er-Rao bound on the variance of a point estimator to construct the optimal series of experiments to estimate these free parameters, and present a complete analysis of the optimal experimental configuration. Our method of transforming the constrained optimal parameter estimation problem into a convex optimization is powerful and widely applicable to other systems.

[1]  F. Lewis,et al.  Optimal and Robust Estimation: With an Introduction to Stochastic Control Theory, Second Edition , 2007 .

[2]  L. Ballentine,et al.  Quantum Theory: Concepts and Methods , 1994 .

[3]  K. B. Whaley,et al.  Quantum nondemolition measurements of single donor spins in semiconductors , 2007, 0711.2343.

[4]  Fuzhen Zhang The Schur complement and its applications , 2005 .

[5]  Mohan Sarovar,et al.  Optimal estimation of one-parameter quantum channels , 2004 .

[6]  E. Davies,et al.  PROBABILISTIC AND STATISTICAL ASPECTS OF QUANTUM THEORY (North‐Holland Series in Statistics and Probability, 1) , 1984 .

[7]  Long-lived spin coherence in silicon with an electrical spin trap readout. , 2008, Physical review letters.

[8]  L. Ballentine,et al.  Probabilistic and Statistical Aspects of Quantum Theory , 1982 .

[9]  K. B. Whaley,et al.  Geometric theory of nonlocal two-qubit operations , 2002, quant-ph/0209120.

[10]  Akio Fujiwara,et al.  Quantum channel identification problem , 2001 .

[11]  Electrically detected magnetic resonance in ion-implanted Si:P nanostructures , 2006, cond-mat/0605516.

[12]  Seth Lloyd,et al.  Quantum process tomography of the quantum Fourier transform. , 2004, The Journal of chemical physics.

[13]  Hiroshi Nagaoka,et al.  Quantum Fisher metric and estimation for pure state models , 1995 .

[14]  L. Jiang,et al.  Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond , 2007, Science.

[15]  C. Helstrom Quantum detection and estimation theory , 1969 .

[16]  B. E. Kane A silicon-based nuclear spin quantum computer , 1998, Nature.

[17]  Sergio Boixo,et al.  Generalized limits for single-parameter quantum estimation. , 2006, Physical review letters.

[18]  Horace P. Yuen,et al.  Multiple-parameter quantum estimation and measurement of nonselfadjoint observables , 1973, IEEE Trans. Inf. Theory.

[19]  Raymond Laflamme,et al.  Symmetrized Characterization of Noisy Quantum Processes , 2007, Science.

[20]  T. Ralph,et al.  Quantum process tomography of a controlled-NOT gate. , 2004, Physical review letters.

[21]  Robert L. Kosut,et al.  Optimal experiment design for quantum state tomography of a molecular vibrational mode , 2008 .

[22]  M. Mohseni,et al.  Direct characterization of quantum dynamics. , 2006, Physical review letters.

[23]  Simon J. Devitt,et al.  Scheme for direct measurement of a general two-qubit Hamiltonian (5 pages) , 2006 .

[24]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[25]  J. Wrachtrup,et al.  Multipartite Entanglement Among Single Spins in Diamond , 2008, Science.

[26]  Jeffrey Bokor,et al.  Solid state quantum computer development in silicon with single ion implantation , 2003 .

[27]  Andrew D. Greentree,et al.  Identifying an experimental two-state Hamiltonian to arbitrary accuracy (11 pages) , 2005 .

[28]  S. Braunstein,et al.  Statistical distance and the geometry of quantum states. , 1994, Physical review letters.

[29]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[30]  Electrical detection of coherent 31P spin quantum states , 2006, quant-ph/0607178.

[31]  C. Slichter Principles of magnetic resonance , 1963 .

[32]  J. Bokor,et al.  Spin-dependent scattering off neutral antimony donors in Si28 field-effect transistors , 2007, 0710.5164.

[33]  Barry C Sanders,et al.  Complete Characterization of Quantum-Optical Processes , 2008, Science.

[34]  Hiroshi Imai,et al.  Quantum parameter estimation of a generalized Pauli channel , 2003 .