Circular law for random discrete matrices of given row sum

Let $M_n$ be a random matrix of size $n\times n$ and let $\lambda_1,...,\lambda_n$ be the eigenvalues of $M_n$. The empirical spectral distribution $\mu_{M_n}$ of $M_n$ is defined as $$\mu_{M_n}(s,t)=\frac{1}{n}# \{k\le n, \Re(\lambda_k)\le s; \Im(\lambda_k)\le t\}.$$ The circular law theorem in random matrix theory asserts that if the entries of $M_n$ are i.i.d. copies of a random variable with mean zero and variance $\sigma^2$, then the empirical spectral distribution of the normalized matrix $\frac{1}{\sigma\sqrt{n}}M_n$ of $M_n$ converges almost surely to the uniform distribution $\mu_\cir$ over the unit disk as $n$ tends to infinity. In this paper we show that the empirical spectral distribution of the normalized matrix of $M_n$, a random matrix whose rows are independent random $(-1,1)$ vectors of given row-sum $s$ with some fixed integer $s$ satisfying $|s|\le (1-o(1))n$, also obeys the circular law. The key ingredient is a new polynomial estimate on the least singular value of $M_n$.

[1]  Djalil Chafaï The Dirichlet Markov Ensemble , 2010, J. Multivar. Anal..

[2]  T. Tao,et al.  RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.

[3]  P. Erdös On a lemma of Littlewood and Offord , 1945 .

[4]  Kevin P. Costello,et al.  Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.

[5]  Terence Tao,et al.  Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.

[6]  András Sárközy,et al.  Über ein Problem von Erdös und Moser , 1965 .

[7]  Hoi H. Nguyen,et al.  Inverse Littlewood-Offord problems and The Singularity of Random Symmetric Matrices , 2011, 1101.3074.

[8]  C. Esseen On the Kolmogorov-Rogozin inequality for the concentration function , 1966 .

[9]  G. Halász Estimates for the concentration function of combinatorial number theory and probability , 1977 .

[10]  D. Kleitman On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , 1970 .

[11]  The Strong Circular Law. Twenty years later. Part II , 2004 .

[12]  T. Tao,et al.  From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.

[13]  C. Bordenave,et al.  The circular law , 2012 .

[14]  E. Szemerédi,et al.  On the probability that a random ±1-matrix is singular , 1995 .

[15]  Hoi H. Nguyen,et al.  On the Singularity of Random Combinatorial Matrices , 2011, SIAM J. Discret. Math..

[16]  Van Vu,et al.  Optimal Inverse Littlewood-Offord theorems , 2010, 1004.3967.

[17]  M. Rudelson,et al.  The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.

[18]  T. Tao,et al.  On the singularity probability of random Bernoulli matrices , 2005, math/0501313.

[19]  Charles Bordenave,et al.  Circular law theorem for random Markov matrices , 2008, Probability Theory and Related Fields.

[20]  J. W. Silverstein,et al.  Spectral Analysis of Large Dimensional Random Matrices , 2009 .

[21]  J. Littlewood,et al.  On the Number of Real Roots of a Random Algebraic Equation , 1938 .

[22]  T. Tao,et al.  On random ±1 matrices: Singularity and determinant , 2006 .

[23]  T. Tao Outliers in the spectrum of iid matrices with bounded rank perturbations , 2010 .

[24]  Roman Vershynin,et al.  Invertibility of symmetric random matrices , 2011, Random Struct. Algorithms.

[25]  Alexander Tikhomirov,et al.  The circular law for random matrices , 2007, 0709.3995.

[26]  M. Talagrand A new look at independence , 1996 .

[27]  H. Nguyen Random doubly stochastic matrices: The circular law , 2012, 1205.0843.

[28]  Terence Tao,et al.  Smooth analysis of the condition number and the least singular value , 2008, Math. Comput..

[29]  Terence Tao,et al.  A sharp inverse Littlewood‐Offord theorem , 2009, Random Struct. Algorithms.

[30]  Wang Zhou,et al.  Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..