Circular law for random discrete matrices of given row sum
暂无分享,去创建一个
Van Vu | Hoi H. Nguyen | V. Vu | H. Nguyen
[1] Djalil Chafaï. The Dirichlet Markov Ensemble , 2010, J. Multivar. Anal..
[2] T. Tao,et al. RANDOM MATRICES: THE CIRCULAR LAW , 2007, 0708.2895.
[3] P. Erdös. On a lemma of Littlewood and Offord , 1945 .
[4] Kevin P. Costello,et al. Random symmetric matrices are almost surely nonsingular , 2005, math/0505156.
[5] Terence Tao,et al. Random matrices: Universality of ESDs and the circular law , 2008, 0807.4898.
[6] András Sárközy,et al. Über ein Problem von Erdös und Moser , 1965 .
[7] Hoi H. Nguyen,et al. Inverse Littlewood-Offord problems and The Singularity of Random Symmetric Matrices , 2011, 1101.3074.
[8] C. Esseen. On the Kolmogorov-Rogozin inequality for the concentration function , 1966 .
[9] G. Halász. Estimates for the concentration function of combinatorial number theory and probability , 1977 .
[10] D. Kleitman. On a lemma of Littlewood and Offord on the distributions of linear combinations of vectors , 1970 .
[11] The Strong Circular Law. Twenty years later. Part II , 2004 .
[12] T. Tao,et al. From the Littlewood-Offord problem to the Circular Law: universality of the spectral distribution of random matrices , 2008, 0810.2994.
[13] C. Bordenave,et al. The circular law , 2012 .
[14] E. Szemerédi,et al. On the probability that a random ±1-matrix is singular , 1995 .
[15] Hoi H. Nguyen,et al. On the Singularity of Random Combinatorial Matrices , 2011, SIAM J. Discret. Math..
[16] Van Vu,et al. Optimal Inverse Littlewood-Offord theorems , 2010, 1004.3967.
[17] M. Rudelson,et al. The Littlewood-Offord problem and invertibility of random matrices , 2007, math/0703503.
[18] T. Tao,et al. On the singularity probability of random Bernoulli matrices , 2005, math/0501313.
[19] Charles Bordenave,et al. Circular law theorem for random Markov matrices , 2008, Probability Theory and Related Fields.
[20] J. W. Silverstein,et al. Spectral Analysis of Large Dimensional Random Matrices , 2009 .
[21] J. Littlewood,et al. On the Number of Real Roots of a Random Algebraic Equation , 1938 .
[22] T. Tao,et al. On random ±1 matrices: Singularity and determinant , 2006 .
[23] T. Tao. Outliers in the spectrum of iid matrices with bounded rank perturbations , 2010 .
[24] Roman Vershynin,et al. Invertibility of symmetric random matrices , 2011, Random Struct. Algorithms.
[25] Alexander Tikhomirov,et al. The circular law for random matrices , 2007, 0709.3995.
[26] M. Talagrand. A new look at independence , 1996 .
[27] H. Nguyen. Random doubly stochastic matrices: The circular law , 2012, 1205.0843.
[28] Terence Tao,et al. Smooth analysis of the condition number and the least singular value , 2008, Math. Comput..
[29] Terence Tao,et al. A sharp inverse Littlewood‐Offord theorem , 2009, Random Struct. Algorithms.
[30] Wang Zhou,et al. Circular law, extreme singular values and potential theory , 2010, J. Multivar. Anal..