Competence Mining for Collaborative Virtual Enterprise

In a context of decision-aid to support the identification of collaborative networks, this paper focuses on extracting essential facets of firm competencies. We present an approach for enrichment of competence ontology, based on two steps where a novel effective filtering step is utilized. First we extract the correlation between terms of a learning dataset using the generation of association rules. Second we retain the relevant new concepts using an extracted semantic information. The suggested approach was tested on an ontology of mechanical industry competencies. Experiments were performed on real data, which show the usefulness of our approach.

[1]  Nada Lavrac,et al.  An Ontology for Virtual Organization Breeding Environments , 2007, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[2]  Lisa Di Jorio,et al.  Enrichissement d'ontologie basé sur les motifs séquentiels , 2007 .

[3]  Kafil Hajlaoui,et al.  Information extraction procedure to support the constitution of Virtual Organizations , 2008, 2008 Second International Conference on Research Challenges in Information Science.

[4]  Xavier Boucher,et al.  Data Mining to Discover Enterprise Networks , 2008, Virtual Enterprises and Collaborative Networks.

[5]  Helmut Schmidt,et al.  Probabilistic part-of-speech tagging using decision trees , 1994 .

[6]  Marc Ehrig,et al.  Similarity for Ontologies - A Comprehensive Framework , 2005, ECIS.

[7]  Timothy W. Finin,et al.  Mining Domain Specific Texts and Glossaries to Evaluate and Enrich Domain Ontologies , 2004, IKE.

[8]  R. Richardson Directorship Interlocks and Corporate Profitability , 1987 .

[9]  Ramakrishnan Srikant,et al.  Mining generalized association rules , 1995, Future Gener. Comput. Syst..

[10]  Rokia Bendaoud Construction et enrichissement d'une ontologie à partir d'un corpus de textes , 2006, CORIA.

[11]  Brian Davis,et al.  Knowledge Engineering and Knowledge Management , 2012, Lecture Notes in Computer Science.

[12]  George Karypis,et al.  Centroid-Based Document Classification: Analysis and Experimental Results , 2000, PKDD.

[13]  Hamideh Afsarmanesh,et al.  Elements of a base VE infrastructure , 2003, Comput. Ind..

[14]  Ramakrishnan Srikant,et al.  Fast Algorithms for Mining Association Rules in Large Databases , 1994, VLDB.

[15]  Ian Horrocks,et al.  Ontologies and the semantic web , 2008, CACM.

[16]  Kafil Hajlaoui,et al.  Dispositifs de recherche et de traitement de l'information en vue d'une aide à la constitution de réseaux d'entreprises. (Devices of research and data processing to help the networks constitution of enterprises) , 2009 .

[17]  Olatz Ansa,et al.  Enriching very large ontologies using the WWW , 2000, ECAI Workshop on Ontology Learning.

[18]  Kourosh Neshatian,et al.  Text Categorization and Classification in Terms of Multi- Attribute Concepts for Enriching Existing Ontologies , 2004 .

[19]  Ralf Steinmetz,et al.  Ontology enrichment with texts from the WWW , 2002 .

[20]  Raphaël Troncy,et al.  Semantic Commitment for Designing Ontologies: A Proposal , 2002, EKAW.

[21]  Steffen Staab,et al.  Ontology Learning Part One - On Discoverying Taxonomic Relations from the Web , 2002 .

[22]  Hamideh Afsarmanesh,et al.  Modeling and management of profiles and competencies in VBEs , 2007, J. Intell. Manuf..

[23]  Josiane Mothe,et al.  Modeling context through domain ontologies , 2006, Information Retrieval.