Studies of vibrating atomic force microscope cantilevers in liquid

An atomic force microscope (AFM) design providing a focused spot of order 7 μm in diameter was used to analyze the motion of vibrating cantilevers in liquid. Picking an operating frequency for tapping mode AFM operation in liquid is complex because there is typically a large number of sharp peaks in the response spectrum of cantilever slope amplitude versus drive frequency. The response spectrum was found to be a product of the cantilever’s broad thermal noise spectrum and an underlying fluid drive spectrum containing the sharp peaks. The geometrical shape of transverse cantilever motion was qualitatively independent of the fluid drive spectrum and could be approximately reproduced by a simple theoretical model. The measurements performed give new insights into the behavior of cantilevers during tapping mode AFM operation in liquid.

[1]  H. Güntherodt,et al.  Dynamic force microscopy in liquids , 1994 .

[2]  Roland G. Winkler,et al.  Forces affecting the substrate in resonant tapping force microscopy , 1995 .

[3]  P K Hansma,et al.  Direct observation of enzyme activity with the atomic force microscope. , 1994, Science.

[4]  Hans-Jürgen Butt,et al.  Calculation of thermal noise in atomic force microscopy , 1995 .

[5]  B G de Grooth,et al.  Viscoelasticity of living cells allows high resolution imaging by tapping mode atomic force microscopy. , 1994, Biophysical journal.

[6]  Stephen P. Timoshenko,et al.  Vibration problems in engineering , 1928 .

[7]  W. Arnold,et al.  Atomic force microscopy at MHz frequencies , 1994 .

[8]  Mark A. Lantz,et al.  Force microscopy imaging in liquids using ac techniques , 1994 .

[9]  J. E. Stern,et al.  Force microscope using a fiber‐optic displacement sensor , 1988 .

[10]  Paul K. Hansma,et al.  Imaging Globular and Filamentous Proteins in Physiological Buffer Solutions with Tapping Mode Atomic Force Microscopy , 1995 .

[11]  H. Bleuler,et al.  Dual Optical Levers for Atomic Force Microscopy , 1995 .

[12]  D. Sarid,et al.  Numerical simulations of a tapping-mode scanning force microscope operating in a liquid , 1995 .

[13]  Kevin Kjoller,et al.  Low‐cost modification of a contact atomic force microscope (AFM) into a sound‐activated tapping mode AFM for use in air and liquids , 1996 .

[14]  E. Bamberg,et al.  Scan speed limit in atomic force microscopy , 1993 .

[15]  Ernst Meyer,et al.  IMAGING OF BIOLOGICAL MATERIALS WITH DYNAMIC FORCE MICROSCOPY , 1994 .

[16]  Paul K. Hansma,et al.  Tapping mode atomic force microscopy in liquids , 1994 .

[17]  G. McClelland,et al.  Atomic force microscopy using optical interferometry , 1988 .

[18]  K. Hane,et al.  Analysis of the resonance characteristics of a cantilever vibrated photothermally in a liquid , 1993 .

[19]  Thomas Thundat,et al.  RESONANCE RESPONSE OF SCANNING FORCE MICROSCOPY CANTILEVERS , 1994 .

[20]  Thomas Thundat,et al.  Harmonic response of near‐contact scanning force microscopy , 1995 .

[21]  D. Sarid Scanning Force Microscopy: With Applications To Electric, Magnetic, And Atomic Forces , 1991 .

[22]  Emil Wolf,et al.  Principles of Optics: Contents , 1999 .

[23]  M. J. Cunningham,et al.  Measurement of the modal shapes of inhomogeneous cantilevers using optical beam deflection , 1995 .

[24]  H. Hansma,et al.  Motion and enzymatic degradation of DNA in the atomic force microscope. , 1994, Biophysical journal.

[25]  Jan Greve,et al.  Tapping mode atomic force microscopy in liquid , 1994 .