Sub-quadratic time for riemann-roch spaces: case of smooth divisors over nodal plane projective curves

We revisit the seminal Brill-Noether algorithm in the rather generic situation of smooth divisors over a nodal plane projective curve. Our approach takes advantage of fast algorithms for polynomials and structured matrices. We reach sub-quadratic time for computing a basis of a Riemann-Roch space. This improves upon previously known complexity bounds.

[1]  Florian Hess,et al.  Computing Riemann-Roch Spaces in Algebraic Function Fields and Related Topics , 2002, J. Symb. Comput..

[2]  T. Muldersa,et al.  On lattice reduction for polynomial matrices , 2003 .

[3]  Joris van der Hoeven,et al.  Deterministic root finding over finite fields using Graeffe transforms , 2015, Applicable Algebra in Engineering, Communication and Computing.

[4]  Grégoire Lecerf,et al.  A concise proof of the Kronecker polynomial system solver from scratch , 2008 .

[5]  Kamal Khuri-Makdisi,et al.  Asymptotically fast group operations on Jacobians of general curves , 2004, Math. Comput..

[6]  Vincent Neiger,et al.  Fast Computation of Shifted Popov Forms of Polynomial Matrices via Systems of Modular Polynomial Equations , 2016, ISSAC.

[7]  Victor Y. Pan,et al.  Fast Rectangular Matrix Multiplication and Applications , 1998, J. Complex..

[8]  Joris van der Hoeven,et al.  Fast computation of generic bivariate resultants , 2021, J. Complex..

[9]  R. Gregory Taylor,et al.  Modern computer algebra , 2002, SIGA.

[10]  Joris van der Hoeven,et al.  Composition Modulo Powers of Polynomials , 2017, ISSAC.

[11]  Marc Moreno Maza,et al.  On the complexity of the D5 principle , 2005, SIGS.

[12]  Joris van der Hoeven,et al.  Directed evaluation , 2020, J. Complex..

[13]  W. Fulton,et al.  Algebraic Curves: An Introduction to Algebraic Geometry , 1969 .

[14]  Vincent Neiger,et al.  Computing Popov and Hermite Forms of Rectangular Polynomial Matrices , 2018, ISSAC.

[15]  D. Le Brigand,et al.  Algorithme de Brill-Noether et codes de Goppa , 1988 .

[16]  Joris van der Hoeven,et al.  Fast multivariate multi-point evaluation revisited , 2020, J. Complex..

[17]  Grégoire Lecerf,et al.  Fast separable factorization and applications , 2008, Applicable Algebra in Engineering, Communication and Computing.

[18]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[19]  Grégoire Lecerf,et al.  Lifting and recombination techniques for absolute factorization , 2007, J. Complex..

[20]  Gaétan Haché,et al.  Construction effective des codes geometriques , 1996 .

[21]  Grégoire Lecerf On the complexity of the Lickteig-Roy subresultant algorithm , 2019, J. Symb. Comput..

[22]  Martin Ziegler,et al.  Fast Multipoint Evaluation of Bivariate Polynomials , 2004, ESA.

[23]  François Le Gall,et al.  Powers of tensors and fast matrix multiplication , 2014, ISSAC.

[24]  Joris van der Hoeven,et al.  On the Complexity Exponent of Polynomial System Solving , 2020, Found. Comput. Math..

[25]  Aude Le Gluher,et al.  A Fast Randomized Geometric Algorithm for Computing Riemann-Roch Spaces , 2018, Math. Comput..

[26]  Gilles Villard,et al.  On Computing the Resultant of Generic Bivariate Polynomials , 2018, ISSAC.