A discriminant binarization transform using genetic algorithm and error-correcting output code for face template protection

In a biometric cryptosystem, biometric templates are encrypted before being stored in the database. This approach often requires a binarization phase to transform the original real-valued templates into their binary versions. Most of the existing binarization schemes do not take into consideration the need to discriminate binary templates; which in turn degrade the system recognition accuracy. This paper proposes a new binarization transform for face template protection using Error-Correcting Output Code (ECOC) and genetic algorithm (GA) which offsets this drawback. The proposed binarization transform novelty lies in the fact that the specific crossover, mutation and extension operators are defined by considering the theoretical properties of the ECOC framework in order to find an optimized coding matrix. The specification of these operations reduce the search space and speed up the convergence rate of GA. In addition, the proposed method is immune from being trapped in local minima. The quality of our method is evaluated using three well-known face databases: CMU PIE, Extended Yale B and FEI. The results demonstrate that the proposed binarization transform can result in a higher recognition accuracy without sacrificing the security of the protocol compared to alternative methods, such as binary discriminant analysis (BDA), discriminability-preserving (DP), chaos biohashing, and Discriminant-Genetic.

[1]  Pong C. Yuen,et al.  A Hybrid Approach for Generating Secure and Discriminating Face Template , 2010, IEEE Transactions on Information Forensics and Security.

[2]  Martin Wattenberg,et al.  A fuzzy commitment scheme , 1999, CCS '99.

[3]  Hamidreza Rashidy Kanan,et al.  Cancelable face using Chaos permutation , 2014, 7'th International Symposium on Telecommunications (IST'2014).

[4]  Luis Hernández Encinas,et al.  A crypto-biometric scheme based on iris-templates with fuzzy extractors , 2012, Inf. Sci..

[5]  Xiaohui Yuan,et al.  Optimizing Discriminability of Globally Binarized Face Templates , 2016 .

[6]  Rafail Ostrovsky,et al.  Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data , 2004, SIAM J. Comput..

[7]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[8]  Sharath Pankanti,et al.  Fingerprint-Based Fuzzy Vault: Implementation and Performance , 2007, IEEE Transactions on Information Forensics and Security.

[9]  Anton H. M. Akkermans,et al.  Face biometrics with renewable templates , 2006, Electronic Imaging.

[10]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[11]  Andrew Beng Jin Teoh,et al.  Cancellable biometrics and user-dependent multi-state discretization in BioHash , 2009, Pattern Analysis and Applications.

[12]  J. I. Hall,et al.  Notes on Coding Theory , 2003 .

[13]  Ee-Chien Chang,et al.  Robust Extraction of Secret Bits from Minutiae , 2007, ICB.

[14]  Andreas Uhl,et al.  A survey on biometric cryptosystems and cancelable biometrics , 2011, EURASIP J. Inf. Secur..

[15]  Anil K. Jain,et al.  Biometric Template Security , 2008, EURASIP J. Adv. Signal Process..

[16]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[17]  Peng Li,et al.  An effective biometric cryptosystem combining fingerprints with error correction codes , 2012, Expert Syst. Appl..

[18]  Pong C. Yuen,et al.  Binary Discriminant Analysis for Generating Binary Face Template , 2012, IEEE Transactions on Information Forensics and Security.

[19]  Sébastien Marcel,et al.  On the vulnerability of face verification systems to hill-climbing attacks , 2010, Pattern Recognit..

[20]  Thomas G. Dietterich,et al.  Solving Multiclass Learning Problems via Error-Correcting Output Codes , 1994, J. Artif. Intell. Res..

[21]  Venu Govindaraju,et al.  Deep Secure Encoding for Face Template Protection , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[22]  Sergio Escalera,et al.  On the Decoding Process in Ternary Error-Correcting Output Codes , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[23]  Anagha P. Khedkar,et al.  A Novel Approach to Generate Face Biometric Template Using Binary Discriminating Analysis , 2014 .

[24]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[25]  Anton H. M. Akkermans,et al.  Face recognition with renewable and privacy preserving binary templates , 2005, Fourth IEEE Workshop on Automatic Identification Advanced Technologies (AutoID'05).

[26]  Pritee Khanna,et al.  Gaussian Random Projection Based Non-invertible Cancelable Biometric Templates , 2015 .

[27]  Andy Adler,et al.  Vulnerabilities in Biometric Encryption Systems , 2005, AVBPA.

[28]  Raymond N. J. Veldhuis,et al.  Preventing the Decodability Attack Based Cross-Matching in a Fuzzy Commitment Scheme , 2011, IEEE Transactions on Information Forensics and Security.

[29]  Anil K. Jain,et al.  Hardening Fingerprint Fuzzy Vault Using Password , 2007, ICB.

[30]  A. Adler,et al.  Images can be regenerated from quantized biometric match score data , 2004, Canadian Conference on Electrical and Computer Engineering 2004 (IEEE Cat. No.04CH37513).

[31]  Yevgeniy Dodis,et al.  Fuzzy Extractors: How to Generate Strong Keys from Biometrics and Other Noisy Data , 2004, EUROCRYPT.

[32]  Munaga V. N. K. Prasad,et al.  Fingerprint template protection using multiline neighboring relation , 2014, Expert Syst. Appl..

[33]  Jiankun Hu,et al.  A blind system identification approach to cancelable fingerprint templates , 2016, Pattern Recognit..

[34]  Mohammad Shahram Moin,et al.  A face template protection approach using chaos and GRP permutation , 2016, Secur. Commun. Networks.

[35]  Yoram Singer,et al.  Reducing Multiclass to Binary: A Unifying Approach for Margin Classifiers , 2000, J. Mach. Learn. Res..

[36]  Ryan M. Rifkin,et al.  In Defense of One-Vs-All Classification , 2004, J. Mach. Learn. Res..

[37]  Frederic P. Miller,et al.  Advanced Encryption Standard , 2009 .

[38]  C. Rathgeb,et al.  Statistical attack against fuzzy commitment scheme , 2012, IET Biom..

[39]  Nasir D. Memon,et al.  Protecting Biometric Templates With Sketch: Theory and Practice , 2007, IEEE Transactions on Information Forensics and Security.

[40]  Sergio Escalera,et al.  Separability of ternary codes for sparse designs of error-correcting output codes , 2009, Pattern Recognit. Lett..

[41]  B. V. K. Vijaya Kumar,et al.  Cancelable biometric filters for face recognition , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[42]  Andrew Beng Jin Teoh,et al.  An analysis on equal width quantization and linearly separable subcode encoding-based discretization and its performance resemblances , 2011, EURASIP J. Adv. Signal Process..

[43]  Elwyn R. Berlekamp,et al.  Algebraic coding theory , 1984, McGraw-Hill series in systems science.

[44]  David J. Kriegman,et al.  Acquiring linear subspaces for face recognition under variable lighting , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[45]  C. Thomaz,et al.  A new ranking method for principal components analysis and its application to face image analysis , 2010, Image Vis. Comput..

[46]  Sergio Escalera,et al.  Error-Correcting Ouput Codes Library , 2010, J. Mach. Learn. Res..

[47]  Chun Chen,et al.  Biometric Quantization through Detection Rate Optimized Bit Allocation , 2009, EURASIP J. Adv. Signal Process..

[48]  Rama Chellappa,et al.  Cancelable Biometrics: A review , 2015, IEEE Signal Processing Magazine.

[49]  Zhe Jin,et al.  A non-invertible Randomized Graph-based Hamming Embedding for generating cancelable fingerprint template , 2014, Pattern Recognit. Lett..

[50]  Anil K. Jain,et al.  Biometric Template Security , 2008, EURASIP J. Adv. Signal Process..