The microwave spectrum and structure of KrAgF

Abstract The microwave spectrum of KrAgF has been assigned between 8–18 GHz, using a cavity pulsed-jet Fourier transform microwave spectrometer. The structure of the molecule has been calculated from the measured rotational constants of four isotopomers. Values for the Kr–Ag and Ag–F bond lengths of ∼2.594 and ∼1.957 A respectively have been determined. A small centrifugal distortion constant (∼0.3 kHz) indicates that the molecule is comparatively rigid. The stretching frequency and dissociation energy of the Kr–Ag bond have been subjected to ab initio calculation at the MP2 level, yieling results of ∼113 cm−1 and ∼32 kJ mol−1 respectively. A Mulliken orbital population analysis suggests that the Kr–Ag bond is weakly covalent in nature. All parameters are found to be consistent with trends established for ArMX and KrMX species.

[1]  Michael C. L. Gerry,et al.  The microwave spectra and structures of Ar–AgX (X=F,Cl,Br) , 2000 .

[2]  Walter Gordy,et al.  Microwave Molecular Spectra , 1970 .

[3]  S. Seidel,et al.  Xenon as a Complex Ligand: The Tetra Xenono Gold(II) Cation in AuXe4 , 2000 .

[4]  Yunjie Xu,et al.  Rotational spectra of the mixed rare gas dimers Ne–Kr and Ar–Kr , 1995 .

[5]  H. Rudolph Contribution to the systematics of r0-derived molecular structure determinations from rotational parameters , 1991 .

[6]  Michael C. L. Gerry,et al.  Noble gas metal chemical bonding: the microwave spectra, structures and hyperfine constants of Ar AuF and Ar AuBr , 2000 .

[7]  James E. Huheey,et al.  Inorganic chemistry; principles of structure and reactivity , 1972 .

[8]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[9]  P. Barran,et al.  Unexpected stability of [Cu⋅Ar]2+,[Ag⋅Ar]2+,[Au⋅Ar]2+, and their larger clusters , 2001 .

[10]  C. C. Costain,et al.  A NEW CRITERION FOR THE DETERMINATION OF MOLECULAR STRUCTURES FROM GROUND STATE ROTATIONAL CONSTANTS , 1958 .

[11]  S. Dapprich,et al.  Stability of Group 11 Carbonyl Complexes Cl−M−CO (M = Cu, Ag, Au) , 1996 .

[12]  Yunjie Xu,et al.  The rotational spectrum of the isotopically substituted van der Waals complex ArOCS, obtained using a pulsed beam microwave Fourier transform spectrometer , 1992 .

[13]  W. Flygare,et al.  Fabry–Perot cavity pulsed Fourier transform microwave spectrometer with a pulsed nozzle particle source , 1981 .

[14]  Y. Ohshima,et al.  Rotational spectrum of a salt-containing van der Waals complex: Ar–NaCl , 1998 .

[15]  Michael C. L. Gerry,et al.  Microwave Spectrum, Structure, and Hyperfine Constants of Kr-AgCl: Formation of a Weak Kr-Ag Covalent Bond. , 2001, Journal of molecular spectroscopy.

[16]  J. Watson,et al.  Least-Squares Mass-Dependence Molecular Structures. , 1999, Journal of molecular spectroscopy.

[17]  Angela K. Wilson,et al.  Gaussian basis sets for use in correlated molecular calculations. IX. The atoms gallium through krypton , 1993 .

[18]  Michael C. L. Gerry,et al.  Noble Gas−Metal Chemical Bonds. Microwave Spectra, Geometries, and Nuclear Quadrupole Coupling Constants of Ar−AuCl and Kr−AuCl , 2000 .

[19]  M. E. Ruiz,et al.  Nonadditivity and the stability of Ag3. A multireference configuration interaction study , 1990 .

[20]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[21]  J. Pople,et al.  Self‐consistent molecular orbital methods. XX. A basis set for correlated wave functions , 1980 .

[22]  Herbert M. Pickett,et al.  The fitting and prediction of vibration-rotation spectra with spin interactions , 1991 .

[23]  Michael C. L. Gerry,et al.  Noble gas–metal chemical bonding? The microwave spectra, structures, and hyperfine constants of Ar–CuX(X=F, Cl, Br) , 2000 .