Capillary blood flow imaging within human finger cuticle using optical microangiography

We report non-invasive 3D imaging of capillary blood flow within human finger cuticle by the use of Doppler optical microangiography (DOMAG) and ultra-high sensitive optical microangiography (UHS-OMAG) techniques. Wide velocity range DOMAG method is applied to provide red blood cell (RBC) axial velocity mapping in capillary loops with ranges of ±0.9 mm/s and ±0.3 mm/s. Additionally, UHS-OMAG technique is engineered to acquire high resolution image of capillary morphology. The presented results are promising to facilitate clinical trials of treatment and diagnosis of various diseases such as diabetes, Raynaud's phenomenon, and connective tissue diseases by quantifying cutaneous blood flow changes within human finger cuticle.

[1]  M. Cutolo,et al.  Scoring the nailfold microvascular changes during the capillaroscopic analysis in systemic sclerosis patients , 2007, Annals of the rheumatic diseases.

[2]  J E Tooke,et al.  Microvascular Function in Human Diabetes: A Physiological Perspective , 1995, Diabetes.

[3]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[4]  Ruikang K. Wang,et al.  In vivo volumetric imaging of microcirculation within human skin under psoriatic conditions using optical microangiography , 2011, Lasers in surgery and medicine.

[5]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[6]  M. Leahy,et al.  Correlation mapping method for generating microcirculation morphology from optical coherence tomography (OCT) intensity images , 2010, Journal of biophotonics.

[7]  Ruikang K. Wang,et al.  Using ultrahigh sensitive optical microangiography to achieve comprehensive depth resolved microvasculature mapping for human retina. , 2011, Journal of biomedical optics.

[8]  Richard Barnett Diabetes , 1904, The Lancet.

[9]  Andrew G. Glen,et al.  APPL , 2001 .

[10]  A C Shore,et al.  Capillaroscopy and the measurement of capillary pressure. , 2000, British journal of clinical pharmacology.

[11]  Philippe Bonnin,et al.  Noninvasive assessment of endothelial function in the skin microcirculation. , 2010, American journal of hypertension.

[12]  P. Boracchi,et al.  Prognostic model based on nailfold capillaroscopy for identifying Raynaud's phenomenon patients at high risk for the development of a scleroderma spectrum disorder: PRINCE (prognostic index for nailfold capillaroscopic examination). , 2008, Arthritis and rheumatism.

[13]  Alessandra Russo,et al.  The role of nail-videocapillaroscopy in early diagnosis of scleroderma. , 2013, Autoimmunity reviews.

[14]  Ruikang K. Wang,et al.  Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography , 2011, Biomedical optics express.

[15]  Joseph A. Izatt,et al.  Doppler velocity detection limitations in spectrometer-based versus swept-source optical coherence tomography , 2011, Biomedical optics express.

[16]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[17]  C. Taylor,et al.  Preliminary Clinical Evaluation of Semi‐automated Nailfold Capillaroscopy in the Assessment of Patients with Raynaud’s Phenomenon , 2011, Microcirculation.

[18]  Ruikang K. Wang,et al.  Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. , 2009, Optics express.

[19]  Ruikang K. Wang,et al.  Optical microangiography provides an ability to monitor responses of cerebral microcirculation to hypoxia and hyperoxia in mice. , 2011, Journal of biomedical optics.

[20]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[21]  Ericka Stricklin-Parker,et al.  Ann , 2005 .

[22]  Ruikang K. Wang,et al.  Theory, developments and applications of optical coherence tomography , 2005 .

[23]  M. Fujimoto,et al.  Association between nail-fold capillary findings and disease activity in dermatomyositis. , 2011, Rheumatology.

[24]  C. Boccara,et al.  Ultrahigh-resolution full-field optical coherence tomography. , 2004, Applied optics.

[25]  Ruikang K. Wang,et al.  Eigendecomposition-Based Clutter Filtering Technique for Optical Microangiography , 2011, IEEE Transactions on Biomedical Engineering.

[26]  N. Volkow,et al.  Cocaine-induced cortical microischemia in the rodent brain: clinical implications , 2012, Molecular Psychiatry.

[27]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[28]  Jannick P. Rolland,et al.  Swept-source based, single-shot, multi-detectable velocity range Doppler optical coherence tomography , 2010, Biomedical optics express.

[29]  Ruikang K. Wang,et al.  Variable-range Doppler optical microangiography using stabilized step scanning and phase variance binarized mask , 2013, Photonics West - Biomedical Optics.

[30]  Vyacheslav Kalchenko,et al.  In vivo characterization of tumor and tumor vascular network using multi‐modal imaging approach , 2011, Journal of biophotonics.

[31]  T. King,et al.  Laser doppler imaging--a new technique for quantifying microcirculatory flow in patients with primary Raynaud's phenomenon and systemic sclerosis. , 1999, Microvascular research.

[32]  Igor Meglinski,et al.  Imaging of subcutaneous microcirculation vascular network by double correlation Optical Coherence Tomography , 2013 .

[33]  Zach DeVito,et al.  Opt , 2017 .