Molecular and morphological analyses disclose the existence of three species of Dolichopoda (Orthoptera: Rhaphidophoridae) in the Calabria region (Italy)

ABSTRACT For a long time, Dolichopoda palpata was the only species of this genus thought to live in the cave habitats of the Calabrian region. The results of our study, based on morphological and molecular data, highlight the existence of three species in the Calabria region. In particular, our data demonstrate the occurrence of two well-separated species, one in the northern Tyrrhenian area and one in the Calabrian Ionian area, attesting to the validity of D. calabra Galvagni 1968, and the discovery of a new species, D. apollinea sp. nov. Both species appear to be geographically very limited. Dolichopoda calabra occurs in the mountain region between Scalone Pass in the north and the Savuto Valley in the south (a district called ‘Catena Costiera’), whereas D. apollinea sp. nov. appears to be distributed on the eastern slope of Pollino Massif. On the other hand, D. palpata shows a vast distribution, occurring in caves from La Sila in the north to the Aspromonte Massif in the extreme south of Calabria. About 1/3 of the Italian Dolichopoda species are present in this relatively small geographical area, supporting the importance of Calabria as a geographical region characterised by a high level of biodiversity. It shows the maximum values of genetic diversity and species richness in comparison with the rest of the Italian peninsula. This fact could be related to the palaeogeological and palaeoclimatic history of the region, as it was affected by glaciation events and eustatic movements. The combination of these two conditions that occurred during the Pliocene and Pleistocene transformed the Calabria into a vast archipelago of little islands, favouring the isolation of populations and the consequent speciation processes. http://www.zoobank.org/urn:lsid:zoobank.org:pub:AB64936E-EAEF-4730-A517-4F0C11226A94

[1]  C. Di Russo,et al.  Dolichopoda cave crickets from Peloponnese (Orthoptera, Rhaphidophoridae): molecular and morphological investigations reveal four new species for Greece , 2021, The European Zoological Journal.

[2]  S. Brouillet,et al.  ASAP: assemble species by automatic partitioning , 2020, Molecular ecology resources.

[3]  Sebastián Duchêne,et al.  BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis , 2018, bioRxiv.

[4]  M. Suchard,et al.  Posterior Summarization in Bayesian Phylogenetics Using Tracer 1.7 , 2018, Systematic biology.

[5]  G. Allegrucci,et al.  Molecular phylogeography of Troglophilus cave crickets (Orthoptera, Rhaphidophoridae): A combination of vicariance and dispersal drove diversification in the East Mediterranean region , 2017 .

[6]  R. Pizzolotto,et al.  Climate change and its impact on epigean and hypogean carabid beetles , 2016, Periodicum Biologorum.

[7]  C. Di Russo,et al.  Phylogeography and systematics of the westernmost Italian Dolichopoda species (Orthoptera, Rhaphidophoridae) , 2014, ZooKeys.

[8]  F. Giorgi,et al.  Hypogean carabid beetles as indicators of global warming? , 2013 .

[9]  Jiajie Zhang,et al.  A general species delimitation method with applications to phylogenetic placements , 2013, Bioinform..

[10]  T. Barraclough,et al.  Delimiting Species Using Single-Locus Data and the Generalized Mixed Yule Coalescent Approach: A Revised Method and Evaluation on Simulated Data Sets , 2013, Systematic biology.

[11]  Ramón Doallo,et al.  CircadiOmics: integrating circadian genomics, transcriptomics, proteomics and metabolomics , 2012, Nature Methods.

[12]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[13]  M. Mattoccia,et al.  Phylogeography of an Italian endemic salamander (genus Salamandrina): glacial refugia, postglacial expansions, and secondary contact , 2011 .

[14]  E. Trucchi,et al.  Tempo and mode of species diversification in Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae). , 2011, Molecular phylogenetics and evolution.

[15]  A. Loy,et al.  Genetic and morphological variation in a Mediterranean glacial refugium: evidence from Italian pygmy shrews, Sorex minutus (Mammalia: Soricomorpha) , 2010 .

[16]  O. Gascuel,et al.  New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. , 2010, Systematic biology.

[17]  P. Brandmayr,et al.  Hotspots of biodiversity and conservation priorities: A methodological approach , 2010 .

[18]  L. Bachmann,et al.  Phylogeography and mitochondrial DNA divergence in Dolichopoda cave crickets (Orthoptera, Rhahidophoridae). , 2009, Hereditas.

[19]  M. Nei,et al.  MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. , 2007, Molecular biology and evolution.

[20]  Alfried P Vogler,et al.  Sequence-based species delimitation for the DNA taxonomy of undescribed insects. , 2006, Systematic biology.

[21]  G. Allegrucci,et al.  Molecular phylogeography of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae): a scenario suggested by mitochondrial DNA. , 2005, Molecular phylogenetics and evolution.

[22]  Michael P. Cummings,et al.  MEGA (Molecular Evolutionary Genetics Analysis) , 2004 .

[23]  E. Sperone,et al.  Amphibians of the Pollino national park: Distribution and notes on conservation , 2004 .

[24]  Jeremy R. deWaard,et al.  Biological identifications through DNA barcodes , 2003, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[25]  F. Masini,et al.  Pleistocene Calabrian and Sicilian bioprovinces , 2002 .

[26]  D. Lunt,et al.  The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies , 1996, Insect molecular biology.

[27]  W. Li,et al.  Maximum likelihood estimation of the heterogeneity of substitution rate among nucleotide sites. , 1995, Molecular biology and evolution.

[28]  R. Vrijenhoek,et al.  DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. , 1994, Molecular marine biology and biotechnology.

[29]  A. Caccone,et al.  Evolutionary divergence in Dolichopoda cave crickets: A comparison of single copy DNA hybridization data with allozymes and morphometric distances , 1992 .

[30]  G. Allegrucci,et al.  Adaptation and speciation of Dolichopoda cave crickets (Orthoptera, Rhaphidophoridae): geographic variation of morphometric indices and allozyme frequencies , 1987 .

[31]  P. Fontana,et al.  Endemism in Italian Orthoptera , 2019 .

[32]  J. Habel,et al.  Biodiversity Hotspots: Distribution and Protection of Conservation Priority Areas , 2011 .

[33]  P. Gratton,et al.  reconstructing the evolutionary history of Dolichopoda cave crickets in the eastern Mediterranean , 2009 .

[34]  G. Serio,et al.  A new method for calculating evolutionary substitution rates , 2005, Journal of Molecular Evolution.

[35]  R. Pizzolotto,et al.  Stipa austroitalica garigues and mountain pastureland in the Pollino National Park (Calabria, Southern Italy) , 2002 .

[36]  V. Perrone,et al.  Calabria-Peloritani terrane and northern Ionian Sea , 2001 .

[37]  O Hammer-Muntz,et al.  PAST: paleontological statistics software package for education and data analysis version 2.09 , 2001 .

[38]  H. Bandelt,et al.  Median-joining networks for inferring intraspecific phylogenies. , 1999, Molecular biology and evolution.

[39]  W. V. Reid,et al.  Biodiversity hotspots. , 1998, Trends in ecology & evolution.

[40]  M. Palombo,et al.  Biogeografia della Calabria meridionale durante il quaternario , 1989 .

[41]  G. Allegrucci,et al.  Genetic structure of populations and species of Dolichopoda cave crickets: evidence of peripatric divergence , 1985 .

[42]  E. Pahlich,et al.  A rapid DNA isolation procedure for small quantities of fresh leaf tissue , 1980 .

[43]  L. Chopard Notes sur deux espèces du genre Dolichopoda Bol. [Orth. Phasgonuridae] , 1917, Bulletin de la Société entomologique de France.

[44]  J. Bolivar Note sur les Locustiens cavernicoles d'Europe , 1880 .