Calculation of enthalpies of formation of actinide nitrides

Abstract We report on the results of ab initio electronic structure calculation of total energies of AnN (An = Ac, … , Am), the respective elemental An-metals and the nitrogen molecule using density functional theory (FP APW + lo method and generalized gradient approximation). The obtained energies are further complemented by low temperature heat capacity data and the enthalpies of formation Δ f H 298 0 are eventually evaluated. While the cohesive energies of AnN reveal an increasing dependence on atomic number from ThN to AmN – a trend similar to that of An-metals – the subtle differences between AnN and An result in enthalpies of formation which show strong negative irregularities at ThN and PaN from a linear downward trend. These are ascribed to substantial covalent contribution of 6d and 5f electrons to chemical bonding.

[1]  L. Brewer Energies of the Electronic Configurations of the Lanthanide and Actinide Neutral Atoms , 1971 .

[2]  D. A. Young Thermodynamics of nuclear materials International atomic energy agency, Vienna, proceedings series, 808 pages, 1962, 66s, $ 11.00, NF 44, DM 38.50 , 1963 .

[3]  C. D. Novion,et al.  Chaleur specifique du mononitrure de thorium de 7 a 300K , 1972 .

[4]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[5]  O. L. Kruger,et al.  The enthalpies of formation of plutonium dioxide and plutonium mononitride , 1969 .

[6]  S. Aronson,et al.  Vapor Pressure Measurements on Thorium Nitrides1 , 1966 .

[7]  V. A. Medvedev,et al.  CODATA key values for thermodynamics , 1989 .

[8]  G. M. Campbell THERMODYNAMIC PROPERTIES OF PLUTONIUM NITRIDE BY GALVANOSTATIC POTENTIAL DETERMINATION. , 1969 .

[9]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[10]  W. M. Olson,et al.  The Melting Point and Decomposition Pressure of Neptunium Mononitride , 1966 .

[11]  R. L. Rose,et al.  Heat content and heat capacity of a Pu/1 wt % Ga delta-stabilized alloy at elevated temperatures , 1970 .

[12]  Lester R. Morss,et al.  The chemistry of the actinide and transactinide elements , 2006 .

[13]  Yasufumi Suzuki,et al.  Vaporization behavior of neptunium mononitride , 1997 .

[14]  J. A. Lee,et al.  Heat capacity of plutonium nitride at low temperatures , 1978 .

[15]  Robert J. Lemire,et al.  Chemical thermodynamics of neptunium and plutonium , 2001 .

[16]  E. Westrum,et al.  Uranium Mononitride: Heat Capacity and Thermodynamic Properties from 5° to 350°K , 1966 .

[17]  E. Cordfunke,et al.  The enthalpies of formation of uranium mononitride and α- and β-uranium sesquinitride by fluorine bomb calorimetry , 1981 .