The Event Horizon General Relativistic Magnetohydrodynamic Code Comparison Project

Recent developments in compact object astrophysics, especially the discovery of merging neutron stars by LIGO, the imaging of the black hole in M87 by the Event Horizon Telescope, and high- precision astrometry of the Galactic Center at close to the event horizon scale by the GRAVITY experiment motivate the development of numerical source models that solve the equations of general relativistic magnetohydrodynamics (GRMHD). Here we compare GRMHD solutions for the evolution of a magnetized accretion flow where turbulence is promoted by the magnetorotational instability from a set of nine GRMHD codes: Athena++, BHAC, Cosmos++, ECHO, H-AMR, iharm3D, HARM-Noble, IllinoisGRMHD, and KORAL. Agreement among the codes improves as resolution increases, as measured by a consistently applied, specially developed set of code performance metrics. We conclude that the community of GRMHD codes is mature, capable, and consistent on these test problems.

Daniel C. M. Palumbo | Chih-Wei L. Huang | Alexander W. Raymond | H. Falcke | T. Lauer | K. Bouman | Bill Freeman | G. Desvignes | S. Ikeda | J. Carlstrom | Z. Etienne | D. James | P. Koch | L. Rezzolla | K. Menten | R. Neri | P. Ho | L. Blackburn | J. Cordes | E. Ros | Sang-Sung Lee | M. Kino | S. Trippe | Guangyao Zhao | D. Byun | M. Gurwell | Jae-Young Kim | P. Galison | M. Hecht | C. Gammie | N. Patel | M. Inoue | F. Schloerb | Jongsoo Kim | R. Narayan | Michael D. Johnson | S. Doeleman | J. Wardle | S. Chatterjee | L. Loinard | F. Roelofs | D. Psaltis | J. Weintroub | A. Rogers | R. Plambeck | R. Tilanus | P. Friberg | J. Moran | K. Young | M. Titus | D. Marrone | T. Krichbaum | A. Roy | V. Fish | K. Akiyama | A. Lobanov | A. Broderick | M. Honma | T. Oyama | J. SooHoo | F. Tazaki | A. Chael | K. Asada | C. Brinkerink | G. Crew | R. Gold | J. Zensus | J. Stone | S. Noble | R. Karuppusamy | Kuo Liu | P. Torne | I. Martí-Vidal | N. Nagar | D. Hughes | Ming-Tang Chen | R. Hesper | Ziyan Zhu | K. Toma | M. Sasada | D. Pesce | P. Tiede | H. Pu | A. Marscher | S. Jorstad | U. Pen | P. Anninos | J. Baker | I. Bemmel | D. Bintley | B. Jannuzi | A. Young | E. Fomalont | K. Chatterjee | I. Natarajan | A. Alberdi | W. Alef | R. Azulay | A. Baczko | D. Ball | M. Baloković | J. Barrett | W. Boland | M. Bremer | R. Brissenden | S. Britzen | T. Bronzwaer | Chi-kwan Chan | I. Cho | P. Christian | Yuzhu Cui | J. Davelaar | R. Deane | J. Dempsey | R. Eatough | R. Fraga-Encinas | C. Fromm | O. Gentaz | B. Georgiev | K. Hada | S. Issaoun | M. Janssen | B. Jeter | T. Jung | M. Karami | T. Kawashima | G. Keating | M. Kettenis | Junhan Kim | J. Koay | S. Koyama | C. Kuo | M. Lindqvist | E. Liuzzo | W. Lo | C. Lonsdale | N. MacDonald | S. Markoff | S. Matsushita | L. Matthews | L. Medeiros | Y. Mizuno | I. Mizuno | K. Moriyama | M. Mościbrodzka | C. Müller | H. Nagai | G. Narayanan | C. Ni | A. Noutsos | H. Okino | H. Olivares | D. Palumbo | V. Piétu | A. PopStefanija | O. Porth | B. Prather | J. A. Preciado-López | V. Ramakrishnan | M. Rawlings | B. Ripperda | M. Rose | A. Roshanineshat | H. Rottmann | C. Ruszczyk | B. Ryan | K. Rygl | S. Sánchez | D. Sánchez-Arguelles | T. Savolainen | K. Schuster | D. Small | B. Sohn | T. Trent | S. Tsuda | N. Wex | R. Wharton | M. Wielgus | G. Wong | Z. Younsi | Shan-Shan Zhao | L. Zanna | H. V. van Langevelde | J. Conway | M. De Laurentis | F. Özel | R. Rao | D. V. van Rossum | C. Kramer | M. Liška | P. C. Fragile | B. Mishra | B. Kelly | N. Tomei | M. Bugli | D. Broguiere | Lei 磊 Huang 黄 | Wu 悟 Jiang 江 | J. Gómez | C. White | M. Nakamura | J. McKinney | C. Goddi | Lijing Shao | J. Wagner | F. Yuan 袁 | G. Bower | Zhiqiang 强 Shen 沈志 | Yongjun 军 Chen 陈永 | R. García | Minfeng 峰 Gu 顾敏 | Luis C. 山 Ho 何子 | M. Kramer | Yan-Rong 荣 Li 李彦 | Zhiyuan 远 Li 李志 | Ru-Sen 森 Lu 路如 | Jirong 荣 Mao 毛基 | A. Raymond | Qingwen 文 Wu 吴庆 | Ye-Fei 飞 Yuan 袁业 | L. Huang 黄 | M. Liska | David Ball | Shiro Ikeda | Aleksandar PopStefanija | Olivier Gentaz | Britton Jeter | C. Kuo | Wen-Ping Lo | Kotaro Moriyama | Jorge A. Preciado-López | Hung-Yi Pu | Ramprasad Rao | Arash Roshanineshat | Daniel R. van Rossum | Niccolò Tomei | D. Hughes

[1]  E. Quataert,et al.  A Resolution Study of Magnetically Arrested Disks , 2019, The Astrophysical Journal.

[2]  R. Keppens,et al.  Relativistic resistive magnetohydrodynamic reconnection and plasmoid formation in merging flux tubes , 2018, Monthly Notices of the Royal Astronomical Society.

[3]  R. Narayan,et al.  Two-temperature, Magnetically Arrested Disc simulations of the jet from the supermassive black hole in M87 , 2018, Monthly Notices of the Royal Astronomical Society.

[4]  O. Porth,et al.  Generalized, Energy-conserving Numerical Simulations of Particles in General Relativity. II. Test Particles in Electromagnetic Fields and GRMHD , 2018, The Astrophysical Journal Supplement Series.

[5]  J. Algaba,et al.  Parabolic Jets from the Spinning Black Hole in M87 , 2018, The Astrophysical Journal.

[6]  S. Rabien,et al.  Detection of orbital motions near the last stable circular orbit of the massive black hole SgrA* , 2018, Astronomy & Astrophysics.

[7]  E. Quataert,et al.  Two-temperature GRRMHD Simulations of M87 , 2018, The Astrophysical Journal.

[8]  P. Sharma,et al.  3D global simulations of RIAFs: convergence, effects of azimuthal extent, and dynamo , 2018, Monthly Notices of the Royal Astronomical Society.

[9]  L. Zanna,et al.  Covariant and 3 + 1 equations for dynamo-chiral general relativistic magnetohydrodynamics , 2018, 1806.07114.

[10]  G. Fazio,et al.  Variability Timescale and Spectral Index of Sgr A* in the Near Infrared: Approximate Bayesian Computation Analysis of the Variability of the Closest Supermassive Black Hole , 2018, The Astrophysical journal.

[11]  Alan E. E. Rogers,et al.  Detection of Intrinsic Source Structure at ∼3 Schwarzschild Radii with Millimeter-VLBI Observations of SAGITTARIUS A* , 2018, 1805.09223.

[12]  P. Anninos,et al.  Relativistic, Viscous, Radiation Hydrodynamic Simulations of Geometrically Thin Disks. I. Thermal and Other Instabilities , 2018, 1803.06423.

[13]  Michael Dumbser,et al.  ADER discontinuous Galerkin schemes for general-relativistic ideal magnetohydrodynamics , 2018, 1801.02839.

[14]  B. Ripperda,et al.  Generalized, Energy-conserving Numerical Simulations of Particles in General Relativity. I. Time-like and Null Geodesics , 2018, The Astrophysical Journal Supplement Series.

[15]  Heino Falcke,et al.  General relativistic magnetohydrodynamical κ-jet models for Sagittarius A , 2017, 1712.02266.

[16]  M. Shibata,et al.  Mass Ejection from the Remnant of a Binary Neutron Star Merger: Viscous-radiation Hydrodynamics Study , 2017, The Astrophysical Journal.

[17]  M. Campanelli,et al.  Quasi-periodic Behavior of Mini-disks in Binary Black Holes Approaching Merger , 2017, 1712.05451.

[18]  I. E. Mellah,et al.  MPI-AMRVAC 2.0 for Solar and Astrophysical Applications , 2017, 1710.06140.

[19]  Berkeley,et al.  Formation of precessing jets by tilted black hole discs in 3D general relativistic MHD simulations , 2017, 1707.06619.

[20]  Luca Del Zanna,et al.  Papaloizou-Pringle instability suppression by the magnetorotational instability in relativistic accretion discs , 2017, 1707.01860.

[21]  P. Chris Fragile,et al.  CosmosDG: An hp-adaptive Discontinuous Galerkin Code for Hyper-resolved Relativistic MHD , 2017, 1706.09939.

[22]  A. Tchekhovskoy,et al.  How important is non-ideal physics in simulations of sub-Eddington accretion on to spinning black holes? , 2017, 1706.01533.

[23]  N. Grosso,et al.  Sixteen years of X-ray monitoring of Sagittarius A*: Evidence for a decay of the faint flaring rate from 2013 August, 13 months before a rise in the bright flaring rate , 2017, 1704.08102.

[24]  R. Narayan,et al.  Evolving non-thermal electrons in simulations of black hole accretion , 2017, 1704.05092.

[25]  F. Foucart,et al.  grim: A Flexible, Conservative Scheme for Relativistic Fluid Theories , 2017, 1702.01106.

[26]  C. Gammie,et al.  Resolution Dependence of Magnetorotational Turbulence in the Isothermal Stratified Shearing Box , 2017, 1702.00777.

[27]  A. Tchekhovskoy,et al.  The disc-jet symbiosis emerges: Modelling the emission of Sagittarius A* with electron thermodynamics , 2016, 1611.09365.

[28]  R. Narayan,et al.  Radiative, two-temperature simulations of low luminosity black hole accretion flows in general relativity , 2016, 1605.03184.

[29]  H. Falcke,et al.  The black hole accretion code , 2016, 1611.09720.

[30]  H. Falcke,et al.  Scale-invariant radio jets and varying black hole spin , 2016, 1610.08652.

[31]  S. Noble,et al.  rHARM: ACCRETION AND EJECTION IN RESISTIVE GR-MHD , 2016, 1610.04445.

[32]  Odele Straub,et al.  GR-AMRVAC code applications: accretion onto compact objects, boson stars versus black holes , 2016 .

[33]  S. Landi,et al.  Fast reconnection in relativistic plasmas: the magnetohydrodynamics tearing instability revisited , 2016, 1605.06331.

[34]  Y. Sekiguchi,et al.  FORMATION OF OVERHEATED REGIONS AND TRUNCATED DISKS AROUND BLACK HOLES: THREE-DIMENSIONAL GENERAL RELATIVISTIC RADIATION-MAGNETOHYDRODYNAMICS SIMULATIONS , 2016, 1605.04992.

[35]  C. Reynolds,et al.  TESTING THE PROPAGATING FLUCTUATIONS MODEL WITH A LONG, GLOBAL ACCRETION DISK SIMULATION , 2015, 1512.05350.

[36]  E. Müller,et al.  Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics , 2015, Living reviews in computational astrophysics.

[37]  James M. Stone,et al.  AN EXTENSION OF THE ATHENA++ CODE FRAMEWORK FOR GRMHD BASED ON ADVANCED RIEMANN SOLVERS AND STAGGERED-MESH CONSTRAINED TRANSPORT , 2015, 1511.00943.

[38]  H. Falcke,et al.  GRMHD simulations of the jet in M87 , 2015 .

[39]  R. Narayan,et al.  Photon-conserving Comptonization in simulations of accretion discs around black holes , 2015, 1508.04980.

[40]  E. Quataert,et al.  AN EXTENDED MAGNETOHYDRODYNAMICS MODEL FOR RELATIVISTIC WEAKLY COLLISIONAL PLASMAS , 2015, 1508.00878.

[41]  A. Tchekhovskoy,et al.  HORIZON-SCALE LEPTON ACCELERATION IN JETS: EXPLAINING THE COMPACT RADIO EMISSION IN M87 , 2015, 1506.04754.

[42]  C. Gammie,et al.  bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT , 2015, 1505.05119.

[43]  Alan E. E. Rogers,et al.  230 GHz VLBI OBSERVATIONS OF M87: EVENT‐HORIZON‐SCALE STRUCTURE DURING AN ENHANCED VERY‐HIGH‐ENERGY γ ?> ‐RAY STATE IN 2012 , 2015, 1505.03545.

[44]  R. Narayan,et al.  FAST VARIABILITY AND MILLIMETER/IR FLARES IN GRMHD MODELS OF Sgr A* FROM STRONG-FIELD GRAVITATIONAL LENSING , 2015, 1505.01500.

[45]  H. Falcke,et al.  RADIO AND MILLIMETER MONITORING OF Sgr ?> A⋆: SPECTRUM, VARIABILITY, AND CONSTRAINTS ON THE G2 ENCOUNTER , 2015, 1502.06534.

[46]  Roland Haas,et al.  IllinoisGRMHD: an open-source, user-friendly GRMHD code for dynamical spacetimes , 2015, 1501.07276.

[47]  K. Asada,et al.  STEADY GENERAL RELATIVISTIC MAGNETOHYDRODYNAMIC INFLOW/OUTFLOW SOLUTION ALONG LARGE-SCALE MAGNETIC FIELDS THAT THREAD A ROTATING BLACK HOLE , 2015, 1501.02112.

[48]  A. Tchekhovskoy,et al.  Global simulations of axisymmetric radiative black hole accretion discs in general relativity with a mean-field magnetic dynamo , 2014, 1407.4421.

[49]  Michael Dumbser,et al.  A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement , 2013, Comput. Phys. Commun..

[50]  M. Ruiz,et al.  RELATIVISTIC SIMULATIONS OF BLACK HOLE–NEUTRON STAR COALESCENCE: THE JET EMERGES , 2014, 1410.7392.

[51]  P. Chris Fragile,et al.  NUMERICAL SIMULATIONS OF OPTICALLY THICK ACCRETION ONTO A BLACK HOLE. II. ROTATING FLOW , 2014, 1408.4460.

[52]  R. Keppens,et al.  MPI-AMRVAC FOR SOLAR AND ASTROPHYSICS , 2014, 1407.2052.

[53]  N. Bucciantini,et al.  Dynamo action in thick discs around Kerr black holes: high-order resistive GRMHD simulations , 2014 .

[54]  A. Mignone,et al.  ON THE CONVERGENCE OF MAGNETOROTATIONAL TURBULENCE IN STRATIFIED ISOTHERMAL SHEARING BOXES , 2014, 1404.6079.

[55]  Andrea Mignone,et al.  High-order conservative reconstruction schemes for finite volume methods in cylindrical and spherical coordinates , 2014, J. Comput. Phys..

[56]  P. Koch,et al.  MEASURING MASS ACCRETION RATE ONTO THE SUPERMASSIVE BLACK HOLE IN M87 USING FARADAY ROTATION MEASURE WITH THE SUBMILLIMETER ARRAY , 2014, 1402.5238.

[57]  R. Narayan,et al.  Hot Accretion Flows Around Black Holes , 2014, 1401.0586.

[58]  Harvard,et al.  Three-dimensional general relativistic radiation magnetohydrodynamical simulation of super-Eddington accretion, using a new code HARMRAD with M1 closure , 2013, 1312.6127.

[59]  A. Tchekhovskoy,et al.  Numerical simulations of super-critical black hole accretion flows in general relativity , 2013, 1311.5900.

[60]  Scott C. Noble,et al.  Dynamic fisheye grids for binary black hole simulations , 2013, 1309.2960.

[61]  S. Doeleman,et al.  An 8 h characteristic time-scale in submillimetre light curves of Sagittarius A* , 2013, 1308.5968.

[62]  L. Rezzolla,et al.  Beyond second-order convergence in simulations of binary neutron stars in full general-relativity , 2013, 1306.6052.

[63]  H. Falcke,et al.  Coupled jet-disk model for Sagittarius A*: explaining the flat-spectrum radio core with GRMHD simulations of jets , 2013, 1310.4951.

[64]  Mareki Honma,et al.  THE INNERMOST COLLIMATION STRUCTURE OF THE M87 JET DOWN TO ∼10 SCHWARZSCHILD RADII , 2013, 1308.1411.

[65]  J. Krolik,et al.  TESTING CONVERGENCE FOR GLOBAL ACCRETION DISKS , 2013, 1306.0243.

[66]  A. Tchekhovskoy,et al.  Semi-implicit scheme for treating radiation under M1 closure in general relativistic conservative fluid dynamics codes , 2012, 1212.5050.

[67]  R. Narayan,et al.  The Shakura-Sunyaev viscosity prescription with variable α (r) , 2012, 1211.0526.

[68]  N. Bucciantini,et al.  A fully covariant mean-field dynamo closure for numerical 3+1 resistive GRMHD , 2012, 1205.2951.

[69]  General relativistic magnetohydrodynamic simulations of accretion on to Sgr A*: how important are radiative losses? , 2012 .

[70]  Alan E. E. Rogers,et al.  Jet-Launching Structure Resolved Near the Supermassive Black Hole in M87 , 2012, Science.

[71]  C. Gammie,et al.  HAM2D: 2D Shearing Box Model , 2012 .

[72]  H. Falcke,et al.  CHANDRA/HETGS OBSERVATIONS OF THE BRIGHTEST FLARE SEEN FROM Sgr A* , 2012, 1209.6354.

[73]  P. Anninos,et al.  THREE-DIMENSIONAL MOVING-MESH SIMULATIONS OF GALACTIC CENTER CLOUD G2 , 2012, 1209.1638.

[74]  R. Narayan,et al.  GRMHD simulations of magnetized advection‐dominated accretion on a non‐spinning black hole: role of outflows , 2012, 1206.1213.

[75]  P. Anninos,et al.  NUMERICAL SIMULATIONS OF OPTICALLY THICK ACCRETION ONTO A BLACK HOLE. I. SPHERICAL CASE , 2012, 1204.5538.

[76]  Y. Zlochower,et al.  CIRCUMBINARY MAGNETOHYDRODYNAMIC ACCRETION INTO INSPIRALING BINARY BLACK HOLES , 2012, 1204.1073.

[77]  P. Armitage,et al.  Emergent mesoscale phenomena in magnetized accretion disc turbulence , 2012, 1203.0314.

[78]  P. Uttley,et al.  The ubiquity of the rms-flux relation in black hole X-ray binaries , 2012, 1202.5877.

[79]  A. Tchekhovskoy,et al.  General Relativistic Modeling of Magnetized Jets from Accreting Black Holes , 2012, 1202.2864.

[80]  Rony Keppens,et al.  Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics , 2012, J. Comput. Phys..

[81]  Princeton,et al.  General relativistic magnetohydrodynamic simulations of magnetically choked accretion flows around black holes , 2012, 1201.4163.

[82]  C. Gammie,et al.  NEAR-INFRARED AND X-RAY QUASI-PERIODIC OSCILLATIONS IN NUMERICAL MODELS OF Sgr A* , 2012, 1201.1917.

[83]  Masanori Nakamura,et al.  THE STRUCTURE OF THE M87 JET: A TRANSITION FROM PARABOLIC TO CONICAL STREAMLINES , 2011, 1110.1793.

[84]  J. Stone,et al.  GLOBAL SIMULATIONS OF ACCRETION DISKS. I. CONVERGENCE AND COMPARISONS WITH LOCAL MODELS , 2011, 1106.4019.

[85]  C. Ott,et al.  The Einstein Toolkit: a community computational infrastructure for relativistic astrophysics , 2011, 1111.3344.

[86]  C. Gammie,et al.  Global GRMHD Simulations of Black Hole Accretion Flows: a Convergence Study , 2011, 1111.0396.

[87]  Eric Agol,et al.  The size of the jet launching region in M87 , 2011, 1109.6011.

[88]  C. Gammie,et al.  NUMERICAL CALCULATION OF MAGNETOBREMSSTRAHLUNG EMISSION AND ABSORPTION COEFFICIENTS , 2011 .

[89]  Harvard,et al.  Efficient Generation of Jets from Magnetically Arrested Accretion on a Rapidly Spinning Black Hole , 2011, 1108.0412.

[90]  C. Gammie,et al.  PAIR PRODUCTION IN LOW-LUMINOSITY GALACTIC NUCLEI , 2011, 1104.2042.

[91]  J. Krolik,et al.  ASSESSING QUANTITATIVE RESULTS IN ACCRETION SIMULATIONS: FROM LOCAL TO GLOBAL , 2011, 1103.5987.

[92]  David Collins,et al.  COMPARING NUMERICAL METHODS FOR ISOTHERMAL MAGNETIZED SUPERSONIC TURBULENCE , 2011, 1103.5525.

[93]  Frank Rieger,et al.  VARIABLE TeV EMISSION AS A MANIFESTATION OF JET FORMATION IN M87? , 2010, 1011.5319.

[94]  A. Goldwurm,et al.  THE TWO STATES OF Sgr A* IN THE NEAR-INFRARED: BRIGHT EPISODIC FLARES ON TOP OF LOW-LEVEL CONTINUOUS VARIABILITY , 2010, 1008.1984.

[95]  Astronomy,et al.  GRMHD in axisymmetric dynamical spacetimes: the X-ECHO code , 2010, 1010.3532.

[96]  P. Chris Fragile,et al.  THE SUBMILLIMETER BUMP IN Sgr A* FROM RELATIVISTIC MHD SIMULATIONS , 2010, 1005.4062.

[97]  P. Longaretti,et al.  MRI-driven turbulent transport: the role of dissipation, channel modes and their parasites , 2010, 1004.1384.

[98]  A. Tchekhovskoy,et al.  Simulations of magnetized discs around black holes: Effects of black hole spin, disc thickness and magnetic field geometry , 2010, 1003.0966.

[99]  J. Krolik,et al.  DEPENDENCE OF INNER ACCRETION DISK STRESS ON PARAMETERS: THE SCHWARZSCHILD CASE , 2010, 1001.4809.

[100]  J. M. Stone,et al.  SUSTAINED MAGNETOROTATIONAL TURBULENCE IN LOCAL SIMULATIONS OF STRATIFIED DISKS WITH ZERO NET MAGNETIC FLUX , 2009, 0909.1570.

[101]  A. Mignone,et al.  High-order Godunov schemes for global 3D MHD simulations of accretion disks. I. Testing the linear growth of the magneto-rotational instability , 2009, 0906.5516.

[102]  P. K. Leung,et al.  RADIATIVE MODELS OF SGR A* FROM GRMHD SIMULATIONS , 2009, 0909.5431.

[103]  E. Agol,et al.  MILLIMETER FLARES AND VLBI VISIBILITIES FROM RELATIVISTIC SIMULATIONS OF MAGNETIZED ACCRETION ONTO THE GALACTIC CENTER BLACK HOLE , 2009, 0909.0267.

[104]  J. Hawley,et al.  VISCOUS AND RESISTIVE EFFECTS ON THE MAGNETOROTATIONAL INSTABILITY WITH A NET TOROIDAL FIELD , 2009, 0906.5352.

[105]  T. Paumard,et al.  EVIDENCE FOR X-RAY SYNCHROTRON EMISSION FROM SIMULTANEOUS MID-INFRARED TO X-RAY OBSERVATIONS OF A STRONG Sgr A* FLARE , 2009, 0903.3416.

[106]  C. Gammie,et al.  LOCALITY OF MHD TURBULENCE IN ISOTHERMAL DISKS , 2009, 0901.0273.

[107]  R. Blandford,et al.  Stability of relativistic jets from rotating, accreting black holes via fully three-dimensional magnetohydrodynamic simulations , 2008, 0812.1060.

[108]  Jessica R. Lu,et al.  A NEAR-INFRARED VARIABILITY STUDY OF THE GALACTIC BLACK HOLE: A RED NOISE SOURCE WITH NO DETECTED PERIODICITY , 2008, 0810.0446.

[109]  J. Krolik,et al.  DIRECT CALCULATION OF THE RADIATIVE EFFICIENCY OF AN ACCRETION DISK AROUND A BLACK HOLE , 2008, 0808.3140.

[110]  José A. Font,et al.  Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity , 2008, Living reviews in relativity.

[111]  A. Niell,et al.  Event-horizon-scale structure in the supermassive black hole candidate at the Galactic Centre , 2008, Nature.

[112]  M. C. Miller,et al.  THE TIME VARIABILITY OF GEOMETRICALLY THIN BLACK HOLE ACCRETION DISKS. I. THE SEARCH FOR MODES IN SIMULATED DISKS , 2008, 0805.2950.

[113]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[114]  A. Tchekhovskoy,et al.  Simulations of ultrarelativistic magnetodynamic jets from gamma‐ray burst engines , 2008, 0803.3807.

[115]  J. Krolik,et al.  Where is the radiation edge in magnetized black hole accretion discs , 2008, 0801.2974.

[116]  Pierre Henri,et al.  On the Magnetic Prandtl Number Behavior of Accretion Disks , 2007, 0706.0828.

[117]  James M. Stone,et al.  An unsplit Godunov method for ideal MHD via constrained transport in three dimensions , 2007, J. Comput. Phys..

[118]  C. Gammie,et al.  Axisymmetric Shearing Box Models of Magnetized Disks , 2008 .

[119]  R. Takahashi Radiation hydrodynamics in Kerr space–time: equations without coordinate singularity at the event horizon , 2007, 0710.3512.

[120]  J. Ollitrault Relativistic hydrodynamics , 2007 .

[121]  S. Komissarov,et al.  Multi-dimensional Numerical Scheme for Resistive Relativistic MHD , 2007, 0708.0323.

[122]  O. Blaes,et al.  Global General Relativistic Magnetohydrodynamic Simulation of a Tilted Black Hole Accretion Disk , 2007, 0706.4303.

[123]  J. Papaloizou,et al.  MHD simulations of the magnetorotational instability in a shearing box with zero net flux II. The effect of transport coefficients , 2007, 0705.3622.

[124]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[125]  P. Longaretti,et al.  Impact of dimensionless numbers on the efficiency of magnetorotational instability induced turbulent transport , 2007, 0704.2943.

[126]  Department of Physics,et al.  WhiskyMHD: a new numerical code for general relativistic magnetohydrodynamics , 2007, gr-qc/0701109.

[127]  J. Moran,et al.  To appear in the Astrophysical Journal Letters Preprint typeset using L ATEX style emulateapj v. 10/09/06 AN UNAMBIGUOUS DETECTION OF FARADAY ROTATION IN SAGITTARIUS A* , 2006 .

[128]  J. McKinney General relativistic force-free electrodynamics: a new code and applications to black hole magnetospheres , 2006, astro-ph/0601410.

[129]  C. Gammie,et al.  Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics , 2005, astro-ph/0512420.

[130]  J. Krolik,et al.  Magnetically Driven Jets in the Kerr Metric , 2005, astro-ph/0512227.

[131]  Santa Barbara,et al.  Cosmos++: Relativistic Magnetohydrodynamics on Unstructured Grids with Local Adaptive Refinement , 2005, astro-ph/0509254.

[132]  J. Krolik,et al.  Magnetically Driven Accretion Flows in the Kerr Metric. IV. Dynamical Properties of the Inner Disk , 2004, astro-ph/0409231.

[133]  C. Gammie,et al.  A Measurement of the Electromagnetic Luminosity of a Kerr Black Hole , 2004, astro-ph/0404512.

[134]  J. Stone,et al.  Angular Momentum Transport by Magnetohydrodynamic Turbulence in Accretion Disks: Gas Pressure Dependence of the Saturation Level of the Magnetorotational Instability , 2003, astro-ph/0312480.

[135]  J. Krolik,et al.  Magnetically Driven Accretion Flows in the Kerr Metric. II. Structure of the Magnetic Field , 2003, astro-ph/0311500.

[136]  L. Zanna,et al.  On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method , 2003, astro-ph/0310183.

[137]  P. Armitage,et al.  The variability of accretion on to Schwarzschild black holes from turbulent magnetized discs , 2003, astro-ph/0302271.

[138]  G. T'oth,et al.  HARM: A Numerical Scheme for General Relativistic Magnetohydrodynamics , 2003, astro-ph/0301509.

[139]  R. Narayan,et al.  Three-dimensional MHD Simulations of Radiatively Inefficient Accretion Flows , 2003, astro-ph/0301402.

[140]  J. Font,et al.  Quasi-periodic accretion and gravitational waves from oscillating 'toroidal neutron stars' around a Schwarzschild black hole , 2002, gr-qc/0210018.

[141]  J. Hawley,et al.  A Numerical Method for General Relativistic Magnetohydrodynamics , 2002, astro-ph/0210518.

[142]  J. Font,et al.  The runaway instability of thick discs around black holes – I. The constant angular momentum case , 2002, astro-ph/0311618.

[143]  H. Falcke,et al.  A Jet-ADAF model for Sgr A* , 2001, astro-ph/0112464.

[144]  Caltech,et al.  Rapid X-ray flaring from the direction of the supermassive black hole at the Galactic Centre , 2001, Nature.

[145]  H. Falcke,et al.  The Nature of the 10 kilosecond X-ray flare in Sgr A* , 2001, astro-ph/0109081.

[146]  P. Uttley,et al.  The flux-dependent amplitude of broadband noise variability in X-ray binaries and active galaxies , 2001, astro-ph/0103367.

[147]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[148]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[149]  Kazunari Shibata,et al.  Relativistic Jet Formation from Black Hole Magnetized Accretion Disks: Method, Tests, and Applications of a General RelativisticMagnetohydrodynamic Numerical Code , 1999 .

[150]  Dinshaw S. Balsara,et al.  Maintaining Pressure Positivity in Magnetohydrodynamic Simulations , 1999 .

[151]  I. Okamoto,et al.  Pair Plasma Production in a Force-free Magnetosphere around a Supermassive Black Hole , 1998 .

[152]  Jonathan E. Grindlay,et al.  Advection-dominated Accretion Model of Sagittarius A*: Evidence for a Black Hole at the Galactic Center , 1997, astro-ph/9706112.

[153]  E. Quataert,et al.  Are Particles in Advection-dominated Accretion Flows Thermal? , 1997, astro-ph/9705067.

[154]  J. Font,et al.  Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach , 1997, astro-ph/0506063.

[155]  Ramesh Narayan,et al.  Explaining the spectrum of Sagittarius A* with a model of an accreting black hole , 1995, Nature.

[156]  R. Narayan,et al.  Advection dominated accretion: Underfed black holes and neutron stars , 1994, astro-ph/9411059.

[157]  Y. Tatematsu,et al.  Magnetohydrodynamic flows in Kerr geometry : energy extraction from black holes , 1990 .

[158]  J. Hawley,et al.  A powerful local shear instability in weakly magnetized disks. I - Linear analysis. II - Nonlinear evolution , 1990 .

[159]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[160]  R. Löhner An adaptive finite element scheme for transient problems in CFD , 1987 .

[161]  P. Woodward,et al.  The Piecewise Parabolic Method (PPM) for Gas Dynamical Simulations , 1984 .

[162]  C. D. Levermore,et al.  Relating Eddington factors to flux limiters , 1984 .

[163]  John F. Hawley,et al.  A Numerical Study of Nonspherical Black Hole Accretion , 1984 .

[164]  S. Stepney,et al.  Numerical fits to important rates in high temperature astrophysical plasmas , 1983 .

[165]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[166]  R. Blandford,et al.  Electromagnetic extraction of energy from Kerr black holes , 1977 .

[167]  V. Moncrief,et al.  Relativistic fluid disks in orbit around Kerr black holes , 1976 .