Desulfation of Heparan Sulfate by Sulf1 and Sulf2 Is Required for Corticospinal Tract Formation

[1]  Tzu-Jen Kao,et al.  Netrin1 Produced by Neural Progenitors, Not Floor Plate Cells, Is Required for Axon Guidance in the Spinal Cord , 2017, Neuron.

[2]  Alain Chédotal,et al.  Floor plate-derived netrin-1 is dispensable for commissural axon guidance , 2017, Nature.

[3]  H. Lortat-Jacob,et al.  The “in and out” of glucosamine 6-O-sulfation: the 6th sense of heparan sulfate , 2016, Glycoconjugate Journal.

[4]  M. Masu Proteoglycans and axon guidance: a new relationship between old partners , 2016, Journal of neurochemistry.

[5]  T. Dierks,et al.  Sulf1 and Sulf2 Differentially Modulate Heparan Sulfate Proteoglycan Sulfation during Postnatal Cerebellum Development: Evidence for Neuroprotective and Neurite Outgrowth Promoting Functions , 2015, PloS one.

[6]  M. A. Basson,et al.  Heparan Sulfotransferases Hs6st1 and Hs2st Keep Erk in Check for Mouse Corpus Callosum Development , 2014, The Journal of Neuroscience.

[7]  G. López-Bendito,et al.  In and out from the cortex: Development of major forebrain connections , 2013, Neuroscience.

[8]  D. Ginty,et al.  Dystroglycan Organizes Axon Guidance Cue Localization and Axonal Pathfinding , 2012, Neuron.

[9]  M. Masu,et al.  Organ-specific Sulfation Patterns of Heparan Sulfate Generated by Extracellular Sulfatases Sulf1 and Sulf2 in Mice* , 2012, The Journal of Biological Chemistry.

[10]  H. Baier,et al.  Assembly of Lamina-Specific Neuronal Connections by Slit Bound to Type IV Collagen , 2011, Cell.

[11]  D. Price,et al.  Heparan Sulfate Sugar Modifications Mediate the Functions of Slits and Other Factors Needed for Mouse Forebrain Commissure Development , 2011, The Journal of Neuroscience.

[12]  R. U. Margolis,et al.  Inhibitors of slit protein interactions with the heparan sulphate proteoglycan glypican‐1: Potential agents for the treatment of spinal cord injury , 2010, Clinical and experimental pharmacology & physiology.

[13]  H. Akiyama,et al.  Identification of casein kinase-1 phosphorylation sites on TDP-43. , 2009, Biochemical and biophysical research communications.

[14]  O. Hobert,et al.  Extracellular Sugar Modifications Provide Instructive and Cell-Specific Information for Axon-Guidance Choices , 2008, Current Biology.

[15]  R. D'Hooge,et al.  Differential involvement of the extracellular 6-O-endosulfatases Sulf1 and Sulf2 in brain development and neuronal and behavioural plasticity , 2008, Journal of cellular and molecular medicine.

[16]  A. Canty,et al.  Molecular mechanisms of axon guidance in the developing corticospinal tract , 2008, Progress in Neurobiology.

[17]  S. Mundlos,et al.  Redundant function of the heparan sulfate 6‐O‐endosulfatases Sulf1 and Sulf2 during skeletal development , 2008, Developmental dynamics : an official publication of the American Association of Anatomists.

[18]  C. Emerson,et al.  Sulfs are regulators of growth factor signaling for satellite cell differentiation and muscle regeneration. , 2007, Developmental biology.

[19]  P. Labosky,et al.  SULF1 and SULF2 regulate heparan sulfate-mediated GDNF signaling for esophageal innervation , 2007, Development.

[20]  D. Spillmann,et al.  Characterization of Anti-heparan Sulfate Phage Display Antibodies AO4B08 and HS4E4* , 2007, Journal of Biological Chemistry.

[21]  M. Tessier-Lavigne,et al.  Secreted Sulfatases Sulf1 and Sulf2 Have Overlapping yet Essential Roles in Mouse Neonatal Survival , 2007, PloS one.

[22]  Thomas Dierks,et al.  The heparanome--the enigma of encoding and decoding heparan sulfate sulfation. , 2007, Journal of biotechnology.

[23]  Jeffrey D. Esko,et al.  Heparan sulphate proteoglycans fine-tune mammalian physiology , 2007, Nature.

[24]  O. Marín,et al.  Robo1 and Robo2 Cooperate to Control the Guidance of Major Axonal Tracts in the Mammalian Forebrain , 2007, The Journal of Neuroscience.

[25]  L. Hsieh‐Wilson,et al.  Profiling the sulfation specificities of glycosaminoglycan interactions with growth factors and chemotactic proteins using microarrays. , 2007, Chemistry & biology.

[26]  M. Masu,et al.  Migration and nucleogenesis of mouse precerebellar neurons visualized by in utero electroporation of a green fluorescent protein gene , 2007, Neuroscience Research.

[27]  T. Dierks,et al.  Heparan sulfate 6-O-endosulfatases: discrete in vivo activities and functional co-operativity. , 2006, The Biochemical journal.

[28]  Oliver Hobert,et al.  The molecular diversity of glycosaminoglycans shapes animal development. , 2006, Annual review of cell and developmental biology.

[29]  D. Price,et al.  Heparan Sulphation Patterns Generated by Specific Heparan Sulfotransferase Enzymes Direct Distinct Aspects of Retinal Axon Guidance at the Optic Chiasm , 2006, The Journal of Neuroscience.

[30]  C. Holt,et al.  Sugar Codes for Axons? , 2005, Neuron.

[31]  C. Nüsslein-Volhard,et al.  Axon Sorting in the Optic Tract Requires HSPG Synthesis by ext2 (dackel) and extl3 (boxer) , 2004, Neuron.

[32]  C. Chien,et al.  When sugars guide axons: insights from heparan sulphate proteoglycan mutants , 2004, Nature Reviews Genetics.

[33]  O. Hobert,et al.  Differential Sulfations and Epimerization Define Heparan Sulfate Specificity in Nervous System Development , 2004, Neuron.

[34]  M. Tessier-Lavigne,et al.  Mammalian Brain Morphogenesis and Midline Axon Guidance Require Heparan Sulfate , 2003, Science.

[35]  M. Masu,et al.  Identification of a novel nonlysosomal sulphatase expressed in the floor plate, choroid plexus and cartilage , 2002, Genes to cells : devoted to molecular & cellular mechanisms.

[36]  O. Marín,et al.  Slit Proteins Prevent Midline Crossing and Determine the Dorsoventral Position of Major Axonal Pathways in the Mammalian Forebrain , 2002, Neuron.

[37]  C. Goodman,et al.  Regulation of Cortical Dendrite Development by Slit-Robo Interactions , 2002, Neuron.

[38]  R. U. Margolis,et al.  Characterization of Slit Protein Interactions with Glypican-1* , 2001, The Journal of Biological Chemistry.

[39]  L. Richards,et al.  Cortical Axon Guidance by the Glial Wedge during the Development of the Corpus Callosum , 2001, The Journal of Neuroscience.

[40]  N. Perrimon,et al.  Specificities of heparan sulphate proteoglycans in developmental processes , 2000, Nature.

[41]  Sophie Dupuis,et al.  Directional guidance of neuronal migration in the olfactory system by the protein Slit , 1999, Nature.

[42]  C. Goodman,et al.  Slit Proteins Bind Robo Receptors and Have an Evolutionarily Conserved Role in Repulsive Axon Guidance , 1999, Cell.

[43]  T. Yagi,et al.  Disruption of Semaphorin III/D Gene Causes Severe Abnormality in Peripheral Nerve Projection , 1997, Neuron.

[44]  H. Niwa,et al.  Efficient selection for high-expression transfectants with a novel eukaryotic vector. , 1991, Gene.

[45]  S. Nagata,et al.  pEF-BOS, a powerful mammalian expression vector. , 1990, Nucleic acids research.

[46]  G. Morriss-Kay,et al.  Alcian Blue staining of glycosaminoglycans in embryonic material: Effect of different fixatives , 1988, The Histochemical Journal.

[47]  Kurt,et al.  Heparan sulfate 6O-endosulfatases : discrete in vivo activities and functional cooperativity , 2006 .