Ras nanoclusters: Versatile lipid-based signaling platforms.

[1]  Nazim Madhavji,et al.  Organization , 2020, WER.

[2]  Travis L. Rodkey,et al.  Caveolae regulate the nanoscale organization of the plasma membrane to remotely control Ras signaling , 2014, The Journal of cell biology.

[3]  L. Reymond,et al.  The Efficacy of Raf Kinase Recruitment to the GTPase H-ras Depends on H-ras Membrane Conformer-specific Nanoclustering*♦ , 2014, The Journal of Biological Chemistry.

[4]  Wan-Chen Lin,et al.  H-Ras forms dimers on membrane surfaces via a protein–protein interface , 2014, Proceedings of the National Academy of Sciences.

[5]  Travis L. Rodkey,et al.  Signal Integration by Lipid-Mediated Spatial Cross Talk between Ras Nanoclusters , 2013, Molecular and Cellular Biology.

[6]  Joe W. Gray,et al.  Single-molecule superresolution imaging allows quantitative analysis of RAF multimer formation and signaling , 2013, Proceedings of the National Academy of Sciences.

[7]  Robert G. Parton,et al.  Caveolae as plasma membrane sensors, protectors and organizers , 2013, Nature Reviews Molecular Cell Biology.

[8]  Dharini van der Hoeven,et al.  Fendiline Inhibits K-Ras Plasma Membrane Localization and Blocks K-Ras Signal Transmission , 2012, Molecular and Cellular Biology.

[9]  Andrew M. Piggott,et al.  Staurosporines Disrupt Phosphatidylserine Trafficking and Mislocalize Ras Proteins* , 2012, The Journal of Biological Chemistry.

[10]  Herbert Waldmann,et al.  N-Ras forms dimers at POPC membranes. , 2012, Biophysical journal.

[11]  H. Waldmann,et al.  The role of G-domain orientation and nucleotide state on the Ras isoform-specific membrane interaction , 2012, European Biophysics Journal.

[12]  Melissa J. Davis,et al.  Structure-based reassessment of the caveolin signaling model: do caveolae regulate signaling through caveolin-protein interactions? , 2012, Developmental cell.

[13]  S. Grinstein,et al.  Phosphatidylserine dynamics in cellular membranes , 2012, Molecular biology of the cell.

[14]  Carla Mattos,et al.  A comprehensive survey of Ras mutations in cancer. , 2012, Cancer research.

[15]  A. Gorfe,et al.  Organization, dynamics, and segregation of Ras nanoclusters in membrane domains , 2012, Proceedings of the National Academy of Sciences.

[16]  J. Hancock,et al.  Ras trafficking, localization and compartmentalized signalling. , 2012, Seminars in cell & developmental biology.

[17]  Yong Zhou,et al.  Nonsteroidal Anti-inflammatory Drugs Alter the Spatiotemporal Organization of Ras Proteins on the Plasma Membrane* , 2012, The Journal of Biological Chemistry.

[18]  C. Chung,et al.  The Lipid Raft-Associated Protein CD98 Is Required for Vaccinia Virus Endocytosis , 2012, Journal of Virology.

[19]  I. Vetter,et al.  Revealing conformational substates of lipidated N-Ras protein by pressure modulation , 2011, Proceedings of the National Academy of Sciences.

[20]  S. Grinstein,et al.  High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine , 2011, The Journal of cell biology.

[21]  A. Gorfe,et al.  Segregation of negatively charged phospholipids by the polycationic and farnesylated membrane anchor of Kras. , 2010, Biophysical journal.

[22]  T. Michel,et al.  The MARCKS Protein Plays a Critical Role in Phosphatidylinositol 4,5-Bisphosphate Metabolism and Directed Cell Movement in Vascular Endothelial Cells* , 2010, The Journal of Biological Chemistry.

[23]  Kai Simons,et al.  Revitalizing membrane rafts: new tools and insights , 2010, Nature Reviews Molecular Cell Biology.

[24]  J. Hancock,et al.  The Anti-inflammatory Drug Indomethacin Alters Nanoclustering in Synthetic and Cell Plasma Membranes* , 2010, The Journal of Biological Chemistry.

[25]  Suryani Lukman,et al.  The Distinct Conformational Dynamics of K-Ras and H-Ras A59G , 2010, PLoS Comput. Biol..

[26]  T. Tian,et al.  Mathematical modeling of K-Ras nanocluster formation on the plasma membrane. , 2010, Biophysical journal.

[27]  Boris N. Kholodenko,et al.  Signalling ballet in space and time , 2010, Nature Reviews Molecular Cell Biology.

[28]  Pascale G. Charest,et al.  A Ras signaling complex controls the RasC-TORC2 pathway and directed cell migration. , 2010, Developmental cell.

[29]  J. Hancock,et al.  The Nonsteroidal Anti-Inflammatory Drug Indomethacin Induces Heterogeneity in Lipid Membranes: Potential Implication for Its Diverse Biological Action , 2010, PloS one.

[30]  A. Gorfe,et al.  Ras membrane orientation and nanodomain localization generate isoform diversity , 2010, Proceedings of the National Academy of Sciences.

[31]  S. Gygi,et al.  MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes , 2009, The Journal of cell biology.

[32]  C. G. Hansen,et al.  SDPR induces membrane curvature and functions in the formation of caveolae , 2009, Nature Cell Biology.

[33]  Richard G. W. Anderson,et al.  SRBC/cavin‐3 is a caveolin adapter protein that regulates caveolae function , 2009, The EMBO journal.

[34]  K. Miura,et al.  Functional Analysis of the Leading Malaria Vaccine Candidate AMA-1 Reveals an Essential Role for the Cytoplasmic Domain in the Invasion Process , 2009, PLoS pathogens.

[35]  J. Hancock,et al.  Activation of the MAPK module from different spatial locations generates distinct system outputs. , 2008, Molecular biology of the cell.

[36]  A. Gorfe,et al.  Mechanisms of Ras membrane organization and signaling: Ras on a rocker , 2008, Cell cycle.

[37]  J. Hancock,et al.  Using plasma membrane nanoclusters to build better signaling circuits. , 2008, Trends in cell biology.

[38]  J. Hancock,et al.  Electrostatic Interactions Positively Regulate K-Ras Nanocluster Formation and Function , 2008, Molecular and Cellular Biology.

[39]  J Andrew McCammon,et al.  A novel switch region regulates H‐ras membrane orientation and signal output , 2008, The EMBO journal.

[40]  Tony Yeung,et al.  Membrane Phosphatidylserine Regulates Surface Charge and Protein Localization , 2008, Science.

[41]  S. Mayor,et al.  PTRF Triggers a Cave In , 2008, Cell.

[42]  M. Kirkham,et al.  PTRF-Cavin, a Conserved Cytoplasmic Protein Required for Caveola Formation and Function , 2008, Cell.

[43]  K. Gawrisch,et al.  Critical fluctuations in domain-forming lipid mixtures , 2007, Proceedings of the National Academy of Sciences.

[44]  J. Mccammon,et al.  H-ras protein in a bilayer: interaction and structure perturbation. , 2007, Journal of the American Chemical Society.

[45]  A. Gorfe,et al.  Ras nanoclusters: molecular structure and assembly. , 2007, Seminars in cell & developmental biology.

[46]  Tianhai Tian,et al.  Plasma membrane nanoswitches generate high-fidelity Ras signal transduction , 2007, Nature Cell Biology.

[47]  R. Latorre,et al.  Dissection of the components for PIP2 activation and thermosensation in TRP channels , 2007, Proceedings of the National Academy of Sciences.

[48]  C. Waterman-Storer,et al.  Caveolin-1 regulates cell polarization and directional migration through Src kinase and Rho GTPases , 2007, The Journal of cell biology.

[49]  J. Mccammon,et al.  Structure and dynamics of the full-length lipid-modified H-Ras protein in a 1,2-dimyristoylglycero-3-phosphocholine bilayer. , 2007, Journal of medicinal chemistry.

[50]  Pascale G. Charest,et al.  Feedback signaling controls leading-edge formation during chemotaxis. , 2006, Current opinion in genetics & development.

[51]  J. Hancock,et al.  Lipid rafts: contentious only from simplistic standpoints , 2006, Nature Reviews Molecular Cell Biology.

[52]  M. Philips,et al.  Compartmentalized Ras/MAPK signaling. , 2006, Annual review of immunology.

[53]  J. Hancock,et al.  Ras signaling from plasma membrane and endomembrane microdomains. , 2005, Biochimica et biophysica acta.

[54]  Robert G Parton,et al.  H-ras, K-ras, and inner plasma membrane raft proteins operate in nanoclusters with differential dependence on the actin cytoskeleton , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[55]  J. van Rheenen,et al.  PIP2 signaling in lipid domains: a critical re‐evaluation , 2005, The EMBO journal.

[56]  Richard A. Firtel,et al.  Localized Ras signaling at the leading edge regulates PI3K, cell polarity, and directional cell movement , 2004, The Journal of cell biology.

[57]  Akihiro Kusumi,et al.  Single-molecule imaging analysis of Ras activation in living cells. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Munro Lipid Rafts Elusive or Illusive? , 2003, Cell.

[59]  Sarah L Veatch,et al.  Separation of liquid phases in giant vesicles of ternary mixtures of phospholipids and cholesterol. , 2003, Biophysical journal.

[60]  J. Hancock,et al.  Ras proteins: different signals from different locations , 2003, Nature Reviews Molecular Cell Biology.

[61]  Robert G. Parton,et al.  Direct visualization of Ras proteins in spatially distinct cell surface microdomains , 2003, The Journal of cell biology.

[62]  M. Glaser,et al.  Caveolin scaffolding region and the membrane binding region of SRC form lateral membrane domains. , 2003, Biochemistry.

[63]  Sarah L Veatch,et al.  Organization in lipid membranes containing cholesterol. , 2002, Physical review letters.

[64]  J. Hancock,et al.  Compartmentalization of Ras proteins. , 2001, Journal of cell science.

[65]  Kai Simons,et al.  Lipid rafts and signal transduction , 2000, Nature Reviews Molecular Cell Biology.

[66]  J. Coers,et al.  Modulation of phagosome biogenesis by Legionella pneumophila creates an organelle permissive for intracellular growth , 1999, Nature Cell Biology.

[67]  J. Hancock,et al.  Dominant-negative caveolin inhibits H-Ras function by disrupting cholesterol-rich plasma membrane domains , 1999, Nature Cell Biology.

[68]  E. Ikonen,et al.  Functional rafts in cell membranes , 1997, Nature.

[69]  R. Bell,et al.  Raf-1 Kinase Possesses Distinct Binding Domains for Phosphatidylserine and Phosphatidic Acid , 1996, The Journal of Biological Chemistry.

[70]  J. Hancock,et al.  Activation of Raf as a result of recruitment to the plasma membrane. , 1994, Science.

[71]  Sally J. Leevers,et al.  Requirement for Ras in Raf activation is overcome by targeting Raf to the plasma membrane , 1994, Nature.

[72]  C J Marshall,et al.  A CAAX or a CAAL motif and a second signal are sufficient for plasma membrane targeting of ras proteins. , 1991, The EMBO journal.

[73]  C. Marshall,et al.  A polybasic domain or palmitoylation is required in addition to the CAAX motif to localize p21 ras to the plasma membrane , 1990, Cell.

[74]  C. Marshall,et al.  All ras proteins are polyisoprenylated but only some are palmitoylated , 1989, Cell.

[75]  J. Downward Targeting RAS signalling pathways in cancer therapy , 2003, Nature Reviews Cancer.