Modelling mixed columnar-equiaxed solidification with melt convection and grain sedimentation – Part I: Model description

Abstract Part I of this two-part investigation presents a volume-averaging multiphase solidification model that accounts for mixed columnar-equiaxed solidification, non-dendritic and dendritic crystal growth, nucleation of equiaxed grains, columnar primary dendrite tip tracking, melt flow, sedimentation of equiaxed crystals, and their influence on macrostructure and macrosegregation. Five distinct thermodynamic phases (phase regions) are defined: solid dendrites in equiaxed grains, the interdendritic melt between equiaxed dendrites, solid dendrites in columnar trunks, the interdendritic melt between trunk dendrites, and the extradendritic melt. These five phase regions are quantified by their volume fractions and characterized by their solute concentrations. The five phase regions are grouped into three hydrodynamic phases: equiaxed grains consisting of solid dendrites and interdendritic melt, columnar trunks consisting of solid dendrites and interdendritic melt, and extradendritic melt. The extradendritic melt is separated from the interdendritic melt with a grain envelope, whose profile connects the primary, secondary or tertiary dendrite tips to form a ‘natural’ enclosure of the equiaxed grains or columnar trunks. The envelope is further simplified as a volume-equivalent sphere for equiaxed grains, or as volume-equivalent cylinder for columnar trunks by use of morphological shape factors. Expansion of the envelopes during solidification is determined by dendrite growth kinetics, using the Kurz–Giovanola–Trivedi model for growth of columnar primary dendrite tips and the Lipton–Glicksman–Kurz model for growth of columnar secondary dendrite tips (radial growth of the columnar trunk) and equiaxed primary dendrite tips. The solidification of the interdendritic melt is driven by the supersaturation of the interdendritic melt and governed by the diffusion in the interdendritic melt region. Illustrative process simulations and model verifications are presented in Part II.

[1]  M. Rappaz,et al.  Solute diffusion model for equiaxed dendritic growth , 1987 .

[2]  Chaoyang Wang,et al.  A multiphase solute diffusion model for dendritic alloy solidification , 1993, Metallurgical and Materials Transactions A.

[3]  Marcelo de Aquino Martorano,et al.  A solutal interaction mechanism for the columnar-to-equiaxed transition in alloy solidification , 2003 .

[4]  Wilfried Kurz,et al.  Theory of Microstructural Development during Rapid Solidification , 1986 .

[5]  Chaoyang Wang,et al.  Incorporating interfacial phenomena in solidification models , 1994 .

[6]  C. Beckermann,et al.  Growth of equiaxed dendritic crystals settling in an undercooled melt, Part 2: Internal solid fraction , 2007 .

[7]  Christoph Beckermann,et al.  Mathematical Modeling of Transport Phenomena During Alloy Solidification , 1993 .

[8]  Michel Rappaz,et al.  Orientation selection in dendritic evolution , 2006, Nature materials.

[9]  M. Rappaz,et al.  Solute diffusion model for equiaxed dendritic growth: analytical solution , 1987 .

[10]  J. Ni,et al.  A volume-averaged two-phase model for transport phenomena during solidification , 1991 .

[11]  Christoph Beckermann,et al.  Growth of equiaxed dendritic crystals settling in an undercooled melt, Part 1: Tip kinetics , 2007 .

[12]  Andreas Ludwig,et al.  Modeling equiaxed solidification with melt convection and grain sedimentation—II. Model verification , 2009 .

[13]  Nikolay Ivanov Kolev Multiphase Flow Dynamics 1 , 2002 .

[14]  Menghuai Wu,et al.  A three-phase model for mixed columnar-equiaxed solidification , 2006 .

[15]  Alexandru Ioan Ciobanas,et al.  Ensemble averaged multi-phase Eulerian model for columnar/equiaxed solidification of a binary alloy: II. Simulation of the columnar-to-equiaxed transition (CET) , 2007 .

[16]  Alexandru Ioan Ciobanas,et al.  Ensemble averaged multiphase Eulerian model for columnar/equiaxed solidification of a binary alloy: I. The mathematical model , 2007 .

[17]  Jan K. Spelt,et al.  Materials Science and Engineering A , 2010 .

[18]  F. Incropera,et al.  Extension of the continuum model for transport phenomena occurring during metal alloy solidification—I. The conservation equations , 1995 .

[19]  Menghuai Wu,et al.  Modeling of globular equiaxed solidification with a two-phase approach , 2002 .

[20]  D. Stefanescu Fundamentals of Solidification , 2004 .

[21]  Christopher E. Brennen,et al.  Fundamentals of Multiphase Flow , 2005 .

[22]  G. Lesoult,et al.  FREE GROWTH OF EQUIAXED CRYSTALS SETTLING IN UNDERCOOLED NH4Cl-H2O MELTS , 1998 .

[23]  Christoph Beckermann,et al.  Prediction of Columnar to Equiaxed Transition during Diffusion-Controlled Dendritic Alloy Solidification , 1994 .

[24]  J. Hunt,et al.  Steady state columnar and equiaxed growth of dendrites and eutectic , 1984 .

[25]  D. Gray,et al.  The validity of the boussinesq approximation for liquids and gases , 1976 .

[26]  Christoph Beckermann,et al.  Equiaxed dendritic solidification with convection: Part I. Multiscale/multiphase modeling , 1996 .

[27]  M. Rappaz,et al.  Modelling of microstructure formation in solidification processes , 1989 .

[28]  H. Combeau,et al.  Experimental Study of Free Growth of Equiaxed NH4Cl Crystals Settling in Undercooled NH4Cl-H2O Melts , 1999 .

[29]  Taylor Francis Online International Materials Reviews , 2008 .

[30]  Menghuai Wu,et al.  Influence of convection and grain movement on globular equiaxed solidification , 2003 .

[31]  Menghuai Wu,et al.  Modeling the columnar-to-equiaxed transition with a three-phase Eulerian approach , 2005 .

[32]  F. Incropera,et al.  Extension of the continuum model for transport phenomena occurring during metal alloy solidification-II. Microscopic considerations , 1995 .

[33]  Martin E. Glicksman,et al.  Dendritic growth into undercooled alloy metals , 1984 .

[34]  Andreas Ludwig,et al.  Using a Three-Phase Deterministic Model for the Columnar-to-Equiaxed Transition , 2007 .

[35]  A. Mo,et al.  Measurements and modeling of the microstructural morphology during equiaxed solidification of Al-Cu alloys , 2001 .

[36]  Chia-Jung Hsu Numerical Heat Transfer and Fluid Flow , 1981 .