Modeling, simulation and optimization of combined fractional-ordinary dynamic systems

Abstract This work proposes an approach to the modeling and optimization of systems involving a coupled set of fractional and ordinary differential equations. We first present a generalized version of the predictor-corrector integration method, which can integrate simultaneously both fractional and ordinary differential equations. Further, we describe an analytical/numerical dynamic optimization strategy that combines the generalized optimality conditions for a fractional-ordinary system derived in this work, the generalized integration technique and the gradient method. The approach is illustrated through a compartmental model in pharmacokinetics as well as a fractional model for a thermal hydrolysis. In both cases, after we apply a formal fractionalization strategy, we propose a reformulation of the models to obtain fractional-ordinary dynamic systems. The systems obtained are further posed within an optimization framework and solved through our approach as fractional-ordinary optimal control problems. Our results show the theoretical and numerical consistency of our approach.

[1]  Urmila M. Diwekar,et al.  A fractional calculus approach to the dynamic optimization of biological reactive systems. Part II: Numerical solution of fractional optimal control problems , 2014 .

[2]  Yong Wang,et al.  Fractional Order Systems Time-Optimal Control and Its Application , 2017, J. Optim. Theory Appl..

[3]  Aris Dokoumetzidis,et al.  Modeling and administration scheduling of fractional-order pharmacokinetic systems , 2017, 1701.08668.

[4]  R. Magin,et al.  Data-driven modelling of drug tissue trapping using anomalous kinetics , 2017 .

[5]  Delfim F. M. Torres,et al.  Necessary and sufficient conditions for the fractional calculus of variations with Caputo derivatives , 2010, 1007.2937.

[6]  António M. Lopes,et al.  Towards fractional sensors , 2019 .

[7]  Igor Podlubny,et al.  Mittag-Leffler stability of fractional order nonlinear dynamic systems , 2009, Autom..

[8]  Lorenz T. Biegler,et al.  Optimization of Fractional Order Dynamic Chemical Processing Systems , 2014 .

[9]  Levente Kovács,et al.  Induced L2-norm minimization of glucose-insulin system for Type I diabetic patients , 2011, Comput. Methods Programs Biomed..

[10]  Maryam Malekzadeh,et al.  Fractional order PDD control of spacecraft rendezvous , 2018 .

[11]  R. Magin Fractional Calculus in Bioengineering , 2006 .

[12]  Om P. Agrawal,et al.  A Formulation and Numerical Scheme for Fractional Optimal Control Problems , 2008 .

[13]  Sohrab Effati,et al.  Solving a class of fractional optimal control problems by the Hamilton–Jacobi–Bellman equation , 2018 .

[14]  Robin De Keyser,et al.  Modelling Doxorubicin effect in various cancer therapies by means of fractional calculus , 2016, 2016 American Control Conference (ACC).

[15]  James F. Kelly,et al.  Fractional calculus for respiratory mechanics: Power law impedance, viscoelasticity, and tissue heterogeneity , 2017 .

[16]  António M. Lopes,et al.  Numerical solution of mixed-type fractional functional differential equations using modified Lucas polynomials , 2019, Comput. Appl. Math..

[17]  Om Prakash Agrawal,et al.  Generalized Variational Problems and Euler-Lagrange equations , 2010, Comput. Math. Appl..

[18]  Fan Yang,et al.  On the definition of fractional derivatives in rheology , 2011 .

[19]  Yangquan Chen,et al.  Computers and Mathematics with Applications an Approximate Method for Numerically Solving Fractional Order Optimal Control Problems of General Form Optimal Control Time-optimal Control Fractional Calculus Fractional Order Optimal Control Fractional Dynamic Systems Riots_95 Optimal Control Toolbox , 2022 .

[20]  Robin De Keyser,et al.  Structural changes in the COPD lung and related heterogeneity , 2017, PloS one.

[21]  Richard Magin,et al.  A commentary on fractionalization of multi-compartmental models , 2010, Journal of Pharmacokinetics and Pharmacodynamics.

[22]  Delfim F. M. Torres,et al.  A Simple Accurate Method for Solving Fractional Variational and Optimal Control Problems , 2016, J. Optim. Theory Appl..

[23]  Mohamed A. E. Herzallah,et al.  Fractional-order Euler–Lagrange equations and formulation of Hamiltonian equations , 2009 .

[24]  Manuel A. Duarte-Mermoud,et al.  Combined Fractional Adaptive Control , 2017 .

[25]  Roberto Garrappa,et al.  Numerical Solution of Fractional Differential Equations: A Survey and a Software Tutorial , 2018 .

[26]  Om P. Agrawal,et al.  Generalized Euler—Lagrange Equations and Transversality Conditions for FVPs in terms of the Caputo Derivative , 2007 .

[27]  YangQuan Chen,et al.  A new collection of real world applications of fractional calculus in science and engineering , 2018, Commun. Nonlinear Sci. Numer. Simul..

[28]  Emmanuel Hanert,et al.  How to avoid unbounded drug accumulation with fractional pharmacokinetics , 2013, Journal of Pharmacokinetics and Pharmacodynamics.

[29]  Ricardo Almeida,et al.  Variational Problems Involving a Caputo-Type Fractional Derivative , 2016, J. Optim. Theory Appl..

[30]  Luis A. Aguirre,et al.  Numerical solution of Caputo fractional differential equations with infinity memory effect at initial condition , 2019, Commun. Nonlinear Sci. Numer. Simul..

[31]  C. Lubich Discretized fractional calculus , 1986 .

[32]  N. Ford,et al.  Analysis of Fractional Differential Equations , 2002 .

[33]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[34]  Robert F. Stengel,et al.  Optimal Control and Estimation , 1994 .

[35]  Zoran D. Jelicic,et al.  Optimality conditions and a solution scheme for fractional optimal control problems , 2009 .

[36]  Om P. Agrawal,et al.  Formulation of Euler–Lagrange equations for fractional variational problems , 2002 .

[37]  Lorenz T. Biegler,et al.  An efficient direct/indirect transcription approach for singular optimal control , 2018, AIChE Journal.

[38]  Ivo Petráš,et al.  Simulation of Drug Uptake in a Two Compartmental Fractional Model for a Biological System. , 2011, Communications in nonlinear science & numerical simulation.

[39]  Teodor M. Atanackovic,et al.  Euler–Lagrange Equations for Lagrangians Containing Complex-order Fractional Derivatives , 2017, J. Optim. Theory Appl..

[40]  Om P. Agrawal,et al.  A formulation and a numerical scheme for fractional optimal control problems , 2006 .

[41]  Richard Magin,et al.  Fractional kinetics in multi-compartmental systems , 2010, Journal of Pharmacokinetics and Pharmacodynamics.

[42]  O. Agrawal A General Formulation and Solution Scheme for Fractional Optimal Control Problems , 2004 .

[43]  N. Ford,et al.  A Predictor-Corrector Approach for the Numerical Solution of Fractional Differential Equations , 2013 .

[44]  Richard L. Magin,et al.  Fractional calculus models of complex dynamics in biological tissues , 2010, Comput. Math. Appl..

[45]  Kourosh Parand,et al.  Collocation method to solve inequality-constrained optimal control problems of arbitrary order , 2019, Engineering with Computers.

[46]  Robin De Keyser,et al.  A two-compartment fractional derivative model for Propofol diffusion in anesthesia , 2013, 2013 IEEE International Conference on Control Applications (CCA).

[47]  U. Diwekar,et al.  A fractional calculus approach to the dynamic optimization of biological reactive systems. Part I: Fractional models for biological reactions , 2014 .

[48]  R. Rico-Martínez,et al.  Kinetic study of the thermal hydrolysis of Agave salmiana for mezcal production. , 2011, Journal of agricultural and food chemistry.

[49]  Maria da Graça Marcos,et al.  Some Applications of Fractional Calculus in Engineering , 2010 .

[50]  Pantelis Sopasakis,et al.  Stabilising model predictive control for discrete-time fractional-order systems , 2016, Autom..

[51]  Robin De Keyser,et al.  Respiratory impedance model with lumped fractional order diffusion compartment , 2013 .

[52]  Stevan Pilipović,et al.  A new approach to the compartmental analysis in pharmacokinetics: fractional time evolution of diclofenac , 2010, Journal of Pharmacokinetics and Pharmacodynamics.

[53]  José António Tenreiro Machado,et al.  A review of definitions of fractional derivatives and other operators , 2019, J. Comput. Phys..

[54]  John Matthew Santosuosso,et al.  Dynamic optimization of batch processing , 2003 .

[55]  José António Tenreiro Machado,et al.  Nonlinear dynamics of the patient's response to drug effect during general anesthesia , 2015, Commun. Nonlinear Sci. Numer. Simul..

[56]  Alan D. Freed,et al.  Detailed Error Analysis for a Fractional Adams Method , 2004, Numerical Algorithms.

[57]  Tian Liang Guo,et al.  The Necessary Conditions of Fractional Optimal Control in the Sense of Caputo , 2012, Journal of Optimization Theory and Applications.

[58]  Monika Zecová,et al.  Heat conduction modeling by using fractional-order derivatives , 2015, Appl. Math. Comput..

[59]  Kai Diethelm,et al.  A fractional calculus based model for the simulation of an outbreak of dengue fever , 2013 .

[60]  Yongsheng Ding,et al.  Optimal Control of a Fractional-Order HIV-Immune System With Memory , 2012, IEEE Transactions on Control Systems Technology.

[61]  Nuno R. O. Bastos Calculus of variations involving Caputo-Fabrizio fractional differentiation , 2018 .

[62]  Dumitru Baleanu,et al.  A new method of finding the fractional Euler-Lagrange and Hamilton equations within Caputo fractional derivatives , 2010 .

[63]  Clara-Mihaela Ionescu,et al.  The role of fractional calculus in modeling biological phenomena: A review , 2017, Commun. Nonlinear Sci. Numer. Simul..

[64]  S. Effati,et al.  Solving differential equations of fractional order using an optimization technique based on training artificial neural network , 2017, Appl. Math. Comput..