Greedy-like algorithms for the cosparse analysis model

[1]  Rémi Gribonval,et al.  Projection Onto The k-Cosparse Set is NP-Hard , 2013, ArXiv.

[2]  Michael Elad,et al.  Analysis K-SVD: A Dictionary-Learning Algorithm for the Analysis Sparse Model , 2013, IEEE Transactions on Signal Processing.

[3]  Michael Elad,et al.  Performance Guarantees of the Thresholding Algorithm for the Cosparse Analysis Model , 2013, IEEE Transactions on Information Theory.

[4]  Deanna Needell,et al.  Stable Image Reconstruction Using Total Variation Minimization , 2012, SIAM J. Imaging Sci..

[5]  Mohamed-Jalal Fadili,et al.  Robust Sparse Analysis Regularization , 2011, IEEE Transactions on Information Theory.

[6]  Michael Elad,et al.  Cosamp and SP for the cosparse analysis model , 2012, 2012 Proceedings of the 20th European Signal Processing Conference (EUSIPCO).

[7]  Michael Elad,et al.  RIP-Based Near-Oracle Performance Guarantees for SP, CoSaMP, and IHT , 2012, IEEE Transactions on Signal Processing.

[8]  Thomas Blumensath,et al.  Accelerated iterative hard thresholding , 2012, Signal Process..

[9]  S. Foucart Sparse Recovery Algorithms: Sufficient Conditions in Terms of RestrictedIsometry Constants , 2012 .

[10]  Volkan Cevher,et al.  Recipes on hard thresholding methods , 2011, 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[11]  Simon Foucart,et al.  Hard Thresholding Pursuit: An Algorithm for Compressive Sensing , 2011, SIAM J. Numer. Anal..

[12]  Song Li,et al.  New bounds on the restricted isometry constant δ2k , 2011 .

[13]  Rémi Gribonval,et al.  Iterative cosparse projection algorithms for the recovery of cosparse vectors , 2011, 2011 19th European Signal Processing Conference.

[14]  Michael Elad,et al.  The Cosparse Analysis Model and Algorithms , 2011, ArXiv.

[15]  Michael Elad,et al.  Cosparse analysis modeling - uniqueness and algorithms , 2011, 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[16]  Michael Elad,et al.  Cosparse Analysis Modeling , 2011 .

[17]  Rachel Ward,et al.  New and Improved Johnson-Lindenstrauss Embeddings via the Restricted Isometry Property , 2010, SIAM J. Math. Anal..

[18]  Tong Zhang,et al.  Sparse Recovery With Orthogonal Matching Pursuit Under RIP , 2010, IEEE Transactions on Information Theory.

[19]  Yonina C. Eldar,et al.  Compressed Sensing with Coherent and Redundant Dictionaries , 2010, ArXiv.

[20]  M. Rudelson,et al.  Non-asymptotic theory of random matrices: extreme singular values , 2010, 1003.2990.

[21]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[22]  Rahul Garg,et al.  Gradient descent with sparsification: an iterative algorithm for sparse recovery with restricted isometry property , 2009, ICML '09.

[23]  Mike E. Davies,et al.  Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces , 2009, IEEE Transactions on Information Theory.

[24]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[25]  I. Daubechies,et al.  Iteratively reweighted least squares minimization for sparse recovery , 2008, 0807.0575.

[26]  Minh N. Do,et al.  A Theory for Sampling Signals from a Union of Subspaces , 2022 .

[27]  Mike E. Davies,et al.  Iterative Hard Thresholding for Compressed Sensing , 2008, ArXiv.

[28]  E. Candès The restricted isometry property and its implications for compressed sensing , 2008 .

[29]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[30]  Pierre Vandergheynst,et al.  Compressed Sensing and Redundant Dictionaries , 2007, IEEE Transactions on Information Theory.

[31]  Michael Elad,et al.  Analysis versus synthesis in signal priors , 2006, 2006 14th European Signal Processing Conference.

[32]  S. Mendelson,et al.  Uniform Uncertainty Principle for Bernoulli and Subgaussian Ensembles , 2006, math/0608665.

[33]  D. Donoho,et al.  Counting faces of randomly-projected polytopes when the projection radically lowers dimension , 2006, math/0607364.

[34]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[35]  R. Tibshirani,et al.  Sparsity and smoothness via the fused lasso , 2005 .

[36]  Steven Kay,et al.  Optimal segmentation of signals and its application to image denoising and boundary feature extraction , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[37]  Rémi Gribonval,et al.  Sparse representations in unions of bases , 2003, IEEE Trans. Inf. Theory.

[38]  Michael Elad,et al.  Optimally sparse representation in general (nonorthogonal) dictionaries via ℓ1 minimization , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[39]  S. Mallat,et al.  Adaptive greedy approximations , 1997 .

[40]  Balas K. Natarajan,et al.  Sparse Approximate Solutions to Linear Systems , 1995, SIAM J. Comput..

[41]  Y. C. Pati,et al.  Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition , 1993, Proceedings of 27th Asilomar Conference on Signals, Systems and Computers.

[42]  Stéphane Mallat,et al.  Matching pursuits with time-frequency dictionaries , 1993, IEEE Trans. Signal Process..