Automatic sign language identification

We propose a Random-Forest based sign language identification system. The system uses low-level visual features and is based on the hypothesis that sign languages have varying distributions of phonemes (hand-shapes, locations and movements). We evaluated the system on two sign languages - British SL and Greek SL, both taken from a publicly available corpus, called Dicta Sign Corpus. Achieved average F1 scores are about 95% - indicating that sign languages can be identified with high accuracy using only low-level visual features.

[1]  Nicolas Pugeault,et al.  Sign language recognition using sub-units , 2012, J. Mach. Learn. Res..

[2]  W. Stokoe,et al.  Sign language structure: an outline of the visual communication systems of the American deaf. 1960. , 1961, Journal of deaf studies and deaf education.

[3]  Y.K. Muthusamy,et al.  Reviewing automatic language identification , 1994, IEEE Signal Processing Magazine.

[4]  Ted E. Dunning,et al.  Statistical Identification of Language , 1994 .

[5]  Gaël Varoquaux,et al.  Scikit-learn: Machine Learning in Python , 2011, J. Mach. Learn. Res..

[6]  Alex Zelinsky,et al.  Learning OpenCV---Computer Vision with the OpenCV Library (Bradski, G.R. et al.; 2008)[On the Shelf] , 2009, IEEE Robotics & Automation Magazine.

[7]  Ming-Kuei Hu,et al.  Visual pattern recognition by moment invariants , 1962, IRE Trans. Inf. Theory.

[8]  Douglas E. Sturim,et al.  The MITLL NIST LRE 2015 Language Recognition System , 2016, Odyssey.

[9]  William M. Campbell,et al.  Acoustic, phonetic, and discriminative approaches to automatic language identification , 2003, INTERSPEECH.

[10]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[11]  Petros Maragos,et al.  Sign Language Recognition, Generation, and Modelling: A Research Effort with Applications in Deaf Communication , 2009, HCI.

[12]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[13]  P. Peer,et al.  Human skin color clustering for face detection , 2003, The IEEE Region 8 EUROCON 2003. Computer as a Tool..

[14]  Scott K. Liddell,et al.  American Sign Language: The Phonological Base , 2013 .

[15]  Marc A. Zissman,et al.  Comparison of : Four Approaches to Automatic Language Identification of Telephone Speech , 2004 .

[16]  Robert B. Ash,et al.  Information Theory , 2020, The SAGE International Encyclopedia of Mass Media and Society.

[17]  Alex Pentland,et al.  Real-Time American Sign Language Recognition Using Desk and Wearable Computer Based Video , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[18]  Alex Pentland,et al.  Real-time American Sign Language recognition from video using hidden Markov models , 1995 .

[19]  E. Klima The signs of language , 1979 .

[20]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[21]  Vladimir Vezhnevets,et al.  A Survey on Pixel-Based Skin Color Detection Techniques , 2003 .

[22]  Douglas A. Reynolds,et al.  Approaches to language identification using Gaussian mixture models and shifted delta cepstral features , 2002, INTERSPEECH.

[23]  Abdesselam Bouzerdoum,et al.  Skin segmentation using color pixel classification: analysis and comparison , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[24]  Rich Caruana,et al.  An empirical comparison of supervised learning algorithms , 2006, ICML.