Developments of Advanced Solutions for Seismic Resisting Precast Concrete Frames

iii ABSTRACT Major advances have been observed during the last two decades in the field of seismic engineering with further refinements of performance-based seismic design philosophies and the subsequent definition of corresponding compliance criteria. Following the globally recognized expectation and ideal aim to provide a modern society with high (seismic) performance structures able to sustain a design level earthquake with limited or negligible damage, alternative solutions have been developed for high-performance, seismic resisting systems. In the last two decades, an alternative approach in seismic design has been introduced for precast concrete buildings in seismic regions with the introduction of “dry” jointed ductile systems also called “hybrid” systems based on unbonded post-tensioned rocking connections. As a result structural systems with high seismic performance capabilities can be implemented, with the unique capability to undergo inelastic displacement similar to their traditional monolithic counterparts, while limiting the damage to the structural system and assuring full recentring capabilities (negligible residual or permanent deformations). The continuous and rapid development of jointed ductile connections for seismic resisting systems has resulted in the validation of a wide range of alternative arrangements, encompassed under the general umbrella of “hybrid” systems. This research provides a comprehensive experimental and analytical investigations of 2and 3Dimensional, 2/3 scaled, exterior beam-column joints subjected both uni and bi-directional (four clove) quasic-static loading protocols into the behaviour, modelling, design and feasibility of new arrangements for “dry” jointed ductile systems for use in regions of high seismicity. In order to further emphasize the enhanced performance of these systems, a comparison with the experimental response and observed damage of 2-D and 3-D monolithic beam-column benchmark specimens is presented. However, after a lot of attention given to the behaviour of the skeleton structure, more recently the focus of research in Earthquake Engineering has concentrated on the behaviour of the floor system within the overall 3D behaviour of the building and the effects of beam elongation. The effects of beam elongation in precast frame systems have been demonstrated to be a potential source of un-expected damage, unless adequate detailing is provided in order to account for displacement incompatibilities between the lateral resisting systems and the floor. Two contributions to beam elongation are typically recognized: a) the material contribution due to