Preparation, adsorption properties, and catalytic activity of 3D porous metal-organic frameworks composed of cubic building blocks and alkali-metal ions.

[1]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[2]  Hiroshi Sano,et al.  Novel Gold Catalysts for the Oxidation of Carbon Monoxide at a Temperature far Below 0 °C , 1987 .

[3]  Chuan-De Wu,et al.  A homochiral porous metal-organic framework for highly enantioselective heterogeneous asymmetric catalysis. , 2005, Journal of the American Chemical Society.

[4]  G. J. Halder,et al.  Guest-Dependent Spin Crossover in a Nanoporous Molecular Framework Material , 2002, Science.

[5]  Kimoon Kim,et al.  Microporous manganese formate: a simple metal-organic porous material with high framework stability and highly selective gas sorption properties. , 2004, Journal of the American Chemical Society.

[6]  Wei‐Yin Sun,et al.  Copper(II) and zinc(II) complexes can fix atmospheric carbon dioxide. , 2005, Angewandte Chemie.

[7]  Noguchi,et al.  A Graphite-Like Complex with Large Cavities Constructed with the Complex Ligand , 2000, Angewandte Chemie.

[8]  Kristie M. Adams,et al.  Porous lanthanide-organic frameworks: synthesis, characterization, and unprecedented gas adsorption properties. , 2003, Journal of the American Chemical Society.

[9]  Masatake Haruta,et al.  Size- and support-dependency in the catalysis of gold , 1997 .

[10]  Wenbin Lin,et al.  Highly interpenetrated metal-organic frameworks for hydrogen storage. , 2004, Angewandte Chemie.

[11]  S. Takamizawa,et al.  Carbon dioxide inclusion phases of a transformable 1D coordination polymer host [Rh2(O2CPh)4(pyz)]n. , 2003, Angewandte Chemie.

[12]  Masatake Haruta,et al.  Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide , 1989 .

[13]  M. Eddaoudi,et al.  4-Connected metal-organic assemblies mediated via heterochelation and bridging of single metal ions: Kagome lattice and the M6L12 octahedron. , 2005, Journal of the American Chemical Society.

[14]  Jeffrey R. Long,et al.  Strong H2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg3(O2C-C10H6-CO2)3 , 2005 .

[15]  J. Johnson,et al.  Microporous metal organic materials: promising candidates as sorbents for hydrogen storage. , 2004, Journal of the American Chemical Society.

[16]  Joanna Rowsell,et al.  Strategien für die Wasserstoffspeicherung in metall‐organischen Kompositgerüsten , 2005 .

[17]  Mitsuru Kondo,et al.  A New, Methane Adsorbent, Porous Coordination Polymer [{CuSiF6(4,4′-bipyridine)2}n] , 2000 .

[18]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[19]  C. Rovira,et al.  A nanoporous molecular magnet with reversible solvent-induced mechanical and magnetic properties , 2003, Nature materials.

[20]  J. Long,et al.  Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). , 2005, Journal of the American Chemical Society.

[21]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[22]  Hailian Li,et al.  T-SHAPED MOLECULAR BUILDING UNITS IN THE POROUS STRUCTURE OF AG(4,4'-BPY).NO3 , 1996 .

[23]  Jinho Oh,et al.  A homochiral metal–organic porous material for enantioselective separation and catalysis , 2000, Nature.

[24]  Bernard Delmon,et al.  Low-Temperature Oxidation of CO over Gold Supported on TiO2, α-Fe2O3, and Co3O4 , 1993 .

[25]  Tatsuo C. Kobayashi,et al.  Direct observation of hydrogen molecules adsorbed onto a microporous coordination polymer. , 2005, Angewandte Chemie.

[26]  Susumu Kitagawa,et al.  [{CuSiF6(4,4′‐bipyridin)2}n], ein neues methanadsorbierendes poröses Koordinationspolymer , 2000 .

[27]  O. Yaghi,et al.  Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels , 1995 .

[28]  M. Haruta Catalysis: Gold rush , 2005, Nature.

[29]  Katsuyuki Ogura,et al.  Preparation, Clathration Ability, and Catalysis of a Two-Dimensional Square Network Material Composed of Cadmium(II) and 4,4'-Bipyridine , 1994 .