Affine Cartesian codes with complementary duals

A linear code $C$ with the property that $C \cap C^{\perp} = \{0 \}$ is said to be a linear complementary dual, or LCD, code. In this paper, we consider generalized affine Cartesian codes which are LCD. Generalized affine Cartesian codes arise naturally as the duals of affine Cartesian codes in the same way that generalized Reed-Solomon codes arise as duals of Reed-Solomon codes. Generalized affine Cartesian codes are evaluation codes constructed by evaluating multivariate polynomials of bounded degree at points in $m$-dimensional Cartesian set over a finite field $K$ and scaling the coordinates. The LCD property depends on the scalars used. Because Reed-Solomon codes are a special case, we obtain a characterization of those generalized Reed-Solomon codes which are LCD along with the more general result for generalized affine Cartesian codes.

[1]  J. Fitzgerald,et al.  Decoding Affine Variety Codes Using Gröbner Bases , 1998, Des. Codes Cryptogr..

[2]  Peter Beelen,et al.  Generalized Hamming weights of affine Cartesian codes , 2017, Finite Fields Their Appl..

[3]  Claude Carlet,et al.  Complementary dual codes for counter-measures to side-channel attacks , 2016, Adv. Math. Commun..

[4]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[5]  W. W. Adams,et al.  An Introduction to Gröbner Bases , 2012 .

[6]  Cícero Carvalho,et al.  On the second Hamming weight of some Reed-Muller type codes , 2013, Finite Fields Their Appl..

[7]  M. Tsfasman,et al.  Algebraic Geometric Codes: Basic Notions , 2007 .

[8]  James L. Massey,et al.  Linear codes with complementary duals , 1992, Discret. Math..

[9]  Cícero Carvalho,et al.  Projective Reed-Muller type codes on rational normal scrolls , 2016, Finite Fields Their Appl..

[10]  H. Tapia-Recillas,et al.  Reed-Muller-Type Codes Over the Segre Variety , 2002 .

[11]  Azucena Tochimani,et al.  Direct products in projective Segre codes , 2015, Finite Fields Their Appl..

[12]  Gilles Lachaud,et al.  The parameters of projective Reed-Müller codes , 1990, Discret. Math..

[13]  Sihem Mesnager,et al.  Linear Codes Over 𝔽q Are Equivalent to LCD Codes for q>3 , 2018, IEEE Trans. Inf. Theory.

[14]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[15]  Lingfei Jin Construction of MDS Codes With Complementary Duals , 2017, IEEE Transactions on Information Theory.

[16]  W. Cary Huffman,et al.  Fundamentals of Error-Correcting Codes , 1975 .

[17]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[18]  Bocong Chen,et al.  New Constructions of MDS Codes With Complementary Duals , 2017, IEEE Transactions on Information Theory.

[19]  Olav Geil,et al.  Weighted Reed–Muller codes revisited , 2011, Des. Codes Cryptogr..

[20]  Cícero Carvalho,et al.  On the next-to-minimal weight of affine cartesian codes , 2017, Finite Fields Their Appl..

[21]  Jean-Marie Goethals,et al.  On Generalized Reed-Muller Codes and Their Relatives , 1970, Inf. Control..

[22]  David A. Cox,et al.  Ideals, Varieties, and Algorithms , 1997 .

[23]  Xiang Yang,et al.  The condition for a cyclic code to have a complementary dual , 1994, Discret. Math..

[24]  M. Esmaeili,et al.  On complementary-dual quasi-cyclic codes , 2009, Finite Fields Their Appl..

[25]  Cunsheng Ding,et al.  LCD Cyclic Codes Over Finite Fields , 2017, IEEE Transactions on Information Theory.

[26]  Anders Bjært Sørensen Projective Reed-Muller codes , 1991, IEEE Trans. Inf. Theory.

[27]  Hiram H. López,et al.  Projective Nested Cartesian Codes , 2014, 1411.6819.

[28]  Rafael H. Villarreal,et al.  Monomial algebras and polyhedral geometry , 2001 .

[29]  D. Eisenbud Commutative Algebra: with a View Toward Algebraic Geometry , 1995 .

[30]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[31]  Sihem Mesnager,et al.  Complementary Dual Algebraic Geometry Codes , 2016, IEEE Transactions on Information Theory.

[32]  Rafael H. Villarreal,et al.  Affine cartesian codes , 2012, Designs, Codes and Cryptography.