Circular Dichroism Spectroscopy of Collagen Fibrillogenesis: A New Use for an Old Technique.

[1]  Lauren Boldon,et al.  Review of the fundamental theories behind small angle X-ray scattering, molecular dynamics simulations, and relevant integrated application , 2015, Nano reviews.

[2]  B. Wallace,et al.  Distinct circular dichroism spectroscopic signatures of polyproline II and unordered secondary structures: Applications in secondary structure analyses , 2014, Protein science : a publication of the Protein Society.

[3]  D. Shreiber,et al.  Methacrylation Induces Rapid, Temperature-Dependent, Reversible Self-Assembly of Type-I Collagen , 2014, Langmuir : the ACS journal of surfaces and colloids.

[4]  E. Douglas,et al.  Effects of various salts on structural polymorphism of reconstituted type I collagen fibrils. , 2013, Colloids and surfaces. B, Biointerfaces.

[5]  Lisa D. Muiznieks,et al.  Molecular assembly and mechanical properties of the extracellular matrix: A fibrous protein perspective. , 2013, Biochimica et biophysica acta.

[6]  J. Harris,et al.  In vitro fibrillogenesis of collagen type I in varying ionic and pH conditions. , 2013, Micron.

[7]  V. Mudera,et al.  Collagen--emerging collagen based therapies hit the patient. , 2013, Advanced drug delivery reviews.

[8]  V. Rogachevsky,et al.  Collagen fibril formation in vitro at nearly physiological temperatures , 2012 .

[9]  Sergey Plotnikov,et al.  Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure , 2012, Nature Protocols.

[10]  Guoying Li,et al.  The thermal behavior of collagen in solution: effect of glycerol and 2-propanol. , 2011, International journal of biological macromolecules.

[11]  J. Orgel,et al.  Molecular and structural mapping of collagen fibril interactions , 2011, Connective tissue research.

[12]  François Berthod,et al.  Collagen-Based Biomaterials for Tissue Engineering Applications , 2010, Materials.

[13]  Kivirikko Ki Biosynthesis of collagen and its disorders , 2010 .

[14]  D. E. Discher,et al.  Matrix elasticity directs stem cell lineage — Soluble factors that limit osteogenesis , 2009 .

[15]  Amran K. Asadi,et al.  pH effects on collagen fibrillogenesis in vitro: Electrostatic interactions and phosphate binding , 2009 .

[16]  Y. Helfrich,et al.  Overview of skin aging and photoaging. , 2008, Dermatology nursing.

[17]  B. Wallace,et al.  Protein secondary structure analyses from circular dichroism spectroscopy: methods and reference databases. , 2008, Biopolymers.

[18]  Julie Glowacki,et al.  Collagen scaffolds for tissue engineering. , 2008, Biopolymers.

[19]  Christopher Thrasivoulou,et al.  Second harmonic generation confocal microscopy of collagen type I from rat tendon cryosections. , 2006, Biophysical journal.

[20]  S. Sen,et al.  Matrix Elasticity Directs Stem Cell Lineage Specification , 2006, Cell.

[21]  D. Mozingo,et al.  The use of collagen-glycosaminoglycan copolymer (Integra) for the repair of hypertrophic scars and keloids. , 2006, Journal of burn care & research : official publication of the American Burn Association.

[22]  O. Gursky,et al.  Monitoring protein aggregation during thermal unfolding in circular dichroism experiments , 2006, Protein science : a publication of the Protein Society.

[23]  T. Ramasami,et al.  Stabilization of collagen using plant polyphenol: role of catechin. , 2005, International journal of biological macromolecules.

[24]  Lee Whitmore,et al.  DICHROWEB, an online server for protein secondary structure analyses from circular dichroism spectroscopic data , 2004, Nucleic Acids Res..

[25]  Yujia Xu,et al.  Equilibrium thermal transitions of collagen model peptides , 2004, Protein science : a publication of the Protein Society.

[26]  B. Palmier,et al.  Dermal regeneration template for deep hand burns: clinical utility for both early grafting and reconstructive surgery. , 2003, British journal of plastic surgery.

[27]  Stephen Mann,et al.  Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. , 2003, International journal of biological macromolecules.

[28]  Patrick Stoller,et al.  Quantitative second-harmonic generation microscopy in collagen. , 2003, Applied optics.

[29]  Matthew F. Paige,et al.  Real-time enzymatic biodegradation of collagen fibrils monitored by atomic force microscopy , 2002 .

[30]  E. Leikina,et al.  Type I collagen is thermally unstable at body temperature , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  T. Ramasami,et al.  Chromium(III)-induced structural changes and self-assembly of collagen. , 2001, Biochemical and biophysical research communications.

[32]  F H Silver,et al.  Assembly of type I collagen: fusion of fibril subunits and the influence of fibril diameter on mechanical properties. , 2000, Matrix biology : journal of the International Society for Matrix Biology.

[33]  Erkki Oja,et al.  Independent component analysis: algorithms and applications , 2000, Neural Networks.

[34]  D. Herbage,et al.  Collagen-based biomaterials as 3D scaffold for cell cultures: applications for tissue engineering and gene therapy , 2000, Medical and Biological Engineering and Computing.

[35]  S. Leikin,et al.  Does the Triple Helical Domain of Type I Collagen Encode Molecular Recognition and Fiber Assembly while Telopeptides Serve as Catalytic Domains? , 1999, The Journal of Biological Chemistry.

[36]  Aapo Hyvärinen,et al.  Fast and robust fixed-point algorithms for independent component analysis , 1999, IEEE Trans. Neural Networks.

[37]  J. Ramshaw,et al.  The collagen triple-helix structure. , 1997, Matrix biology : journal of the International Society for Matrix Biology.

[38]  J. A. Chapman,et al.  Collagen fibril formation. , 1996, The Biochemical journal.

[39]  R. Burgeson,et al.  Dermal collagen fibrils are hybrids of type I and type III collagen molecules. , 1990, Journal of structural biology.

[40]  K. Kadler,et al.  Assembly of type I collagen fibrils de novo. Between 37 and 41 degrees C the process is limited by micro-unfolding of monomers. , 1988, The Journal of biological chemistry.

[41]  P. Scott Spectroscopic study of environment-dependent changes in the conformation of the isolated carboxy-terminal telopeptide of type I collagen. , 1986, Biochemistry.

[42]  F. Silver,et al.  Kinetic analysis of collagen fibrillogenesis: II. Corneal and scleral type I collagen. , 1984, Collagen and related research.

[43]  T. Schmid,et al.  Denaturation-renaturation properties of two molecular forms of short-chain cartilage collagen. , 1984, Biochemistry.

[44]  F. Silver,et al.  Kinetic analysis of collagen fibrillogenesis: I. Use of turbidity--time data. , 1983, Collagen and related research.

[45]  D. Helseth,et al.  Collagen self-assembly in vitro. Differentiating specific telopeptide-dependent interactions using selective enzyme modification and the addition of free amino telopeptide. , 1981, The Journal of biological chemistry.

[46]  Johnson Wc,et al.  Information content in the circular dichroism of proteins. , 1981 .

[47]  D. Prockop,et al.  Thermal stability of the triple helix of type I procollagen and collagen. Precautions for minimizing ultraviolet damage to proteins during circular dichroism studies. , 1979, Biochemistry.

[48]  K. Kivirikko,et al.  [Biosynthesis of collagen and its disorders]. , 1979, Duodecim; laaketieteellinen aikakauskirja.

[49]  R. Glanville,et al.  Physical evidence for the assembly of A and B chains of human placental collagen in a single triple helix. , 1978, European journal of biochemistry.

[50]  K. Piez,et al.  Collagen fibril formation. Optimal in vitro conditions and preliminary kinetic results. , 1978, The Journal of biological chemistry.

[51]  W. Comper,et al.  The mechanism of nucleation for in vitro collagen fibril formation , 1977, Biopolymers.

[52]  H. Green,et al.  Differentiated Cell Types and the Regulation of Collagen Synthesis , 1966, Nature.

[53]  H. Green,et al.  Collagen and Cell Protein Synthesis by an Established Mammalian Fibroblast Line , 1964, Nature.

[54]  G. C. Wood,et al.  The formation of fibrils from collagen solutions. 1. The effect of experimental conditions: kinetic and electron-microscope studies. , 1960, The Biochemical journal.

[55]  S. Ricard-Blum The collagen family. , 2011, Cold Spring Harbor perspectives in biology.

[56]  N. Greenfield Using circular dichroism spectra to estimate protein secondary structure , 2007, Nature Protocols.

[57]  Guoying Li,et al.  Physicochemical properties of collagen, gelatin and collagen hydrolysate derived from bovine limed split wastes , 2006 .

[58]  Lee Whitmore,et al.  DICHROWEB: an interactive website for the analysis of protein secondary structure from circular dichroism spectra , 2002, Bioinform..

[59]  Neil D. Rawlings,et al.  Handbook of proteolytic enzymes , 1998 .

[60]  H. Birkedal‐Hansen,et al.  Matrix metalloproteinases: a review. , 1993, Critical reviews in oral biology and medicine : an official publication of the American Association of Oral Biologists.

[61]  W C Johnson,et al.  Information content in the circular dichroism of proteins. , 1981, Biochemistry.

[62]  L. Peltonen,et al.  Thermal stability of type I and type III procollagens from normal human fibroblasts and from a patient with osteogenesis imperfecta. , 1980, Proceedings of the National Academy of Sciences of the United States of America.

[63]  K. Kivirikko,et al.  The biosynthesis of collagen and its disorders (second of two parts). , 1979, The New England journal of medicine.