A Metric Approach to nD Images Edge Detection with Clifford Algebras

The aim of this paper is to perform edge detection in color-infrared images from the point of view of Clifford algebras. The main idea is that such an image can be seen as a section of a Clifford bundle associated to the RGBT-space (Red, Green, Blue, Temperature) of acquisition. Dealing with geometric calculus and covariant derivatives of appropriate sections with respect to well-chosen connections allows to get various color and temperature information needed for the segmentation. We show in particular how to recover the first fundamental form of the image embedded in a LSHT-space (Luminance, Saturation, Hue, Temperature) equipped with a metric tensor. We propose applications to color edge detection with some constraints on colors and to edge detection in color-infrared images with constraints on both colors and temperature. Other applications related to different choices of connections, sections and embedding spaces for nD images may be considered from this general theoretical framework.

[1]  Thomas Batard,et al.  Clifford Algebra Bundles to Multidimensional Image Segmentation , 2010 .

[2]  Michael Francis Atiyah,et al.  Introduction to commutative algebra , 1969 .

[3]  N. Bourbaki Lie groups and Lie algebras , 1998 .

[4]  T. Frankel The geometry of physics : an introduction , 2004 .

[5]  G. Sommer Geometric computing with Clifford algebras: theoretical foundations and applications in computer vision and robotics , 2001 .

[6]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[7]  Guillermo Sapiro,et al.  Color Snakes , 1997, Comput. Vis. Image Underst..

[8]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[9]  B. Dubrovin,et al.  Modern geometry--methods and applications , 1984 .

[10]  Thierry Carron,et al.  Color edge detector using jointly hue, saturation and intensity , 1994, Proceedings of 1st International Conference on Image Processing.

[11]  Clifford,et al.  Applications of Grassmann's Extensive Algebra , 1878 .

[12]  P. Lounesto Clifford Algebras and Spinors , 1997 .

[13]  Reiner Lenz,et al.  COLOR EDGE DETECTORS FOR CONICAL COLOR SPACES , 2000 .

[14]  Aldo Cumani,et al.  Edge detection in multispectral images , 1991, CVGIP Graph. Model. Image Process..

[15]  D. Hestenes,et al.  Clifford Algebra to Geometric Calculus , 1984 .

[16]  Michael H. Brill,et al.  Color appearance models , 1998 .

[17]  Utpal Roy,et al.  Color Based Image Segmentation , 2008, 2008 International Conference on Information Technology.

[18]  Gerald Sommer,et al.  Geometric Computing with Clifford Algebras , 2001, Springer Berlin Heidelberg.

[19]  Stephen J. Sangwine,et al.  Colour-sensitive edge detection using hypercomplex filters , 2000, 2000 10th European Signal Processing Conference.

[20]  Thierry Carron Segmentations d'images couleur dans la base teinte-luminance-saturation : approche numérique et symbolique , 1995 .

[21]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[22]  Stephen J. Sangwine,et al.  Colour image filters based on hypercomplex convolution , 2000 .

[23]  Nicolas Bourbaki,et al.  Elements de Mathematiques , 1954, The Mathematical Gazette.

[24]  W. E. Baylis Clifford (Geometric) Algebras: With Applications to Physics, Mathematics, and Engineering , 1999 .

[25]  Pierre Cartier,et al.  The algebraic theory of spinors and Clifford algebras , 1996 .

[26]  Anthony J. Yezzi,et al.  Modified curvature motion for image smoothing and enhancement , 1998, IEEE Trans. Image Process..

[27]  W. Greub,et al.  Connections, curvature and cohomology , 1976 .

[28]  David Hestenes New Foundations for Classical Mechanics , 1986 .

[29]  Theo Gevers,et al.  Classifying color transitions into shadow-geometry, illumination, highlight or material edges , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[30]  M. M. Postnikov Leçons de géométrie ; Groupes et algèbres de Lie , 1985 .

[31]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..

[32]  Christer O. Kiselman,et al.  Lectures on Geometry , 2001 .

[33]  David Hestenes,et al.  Space-time algebra , 1966 .

[34]  Mark D. Fairchild,et al.  Color Appearance Models , 1997, Computer Vision, A Reference Guide.