Khovanskii Bases, Higher Rank Valuations, and Tropical Geometry

Given a finitely generated algebra $A$, it is a fundamental question whether $A$ has a full rank discrete (Krull) valuation $\mathfrak{v}$ with finitely generated value semigroup. We give a necessary and sufficient condition for this, in terms of tropical geometry of $A$. In the course of this we introduce the notion of a Khovanskii basis for $(A, \mathfrak{v})$ which provides a framework for far extending Gr\"obner theory on polynomial algebras to general finitely generated algebras. In particular, this makes a direct connection between the theory of Newton-Okounkov bodies and tropical geometry, and toric degenerations arising in both contexts. We also construct an associated compactification of $Spec(A)$. Our approach includes many familiar examples such as the Gel'fand-Zetlin degenerations of coordinate rings of flag varieties as well as wonderful compactifications of reductive groups. We expect that many examples coming from cluster algebras naturally fit into our framework.

[1]  M. Ziegler Volume 152 of Graduate Texts in Mathematics , 1995 .

[2]  V. Popov CONTRACTION OF THE ACTIONS OF REDUCTIVE ALGEBRAIC GROUPS , 1987 .

[3]  Robert Lazarsfeld,et al.  Convex Bodies Associated to Linear Series , 2008, 0805.4559.

[4]  S. Payne Analytification is the limit of all tropicalizations , 2008, 0805.1916.

[5]  B. Sturmfels,et al.  Sagbi Bases of Cox-Nagata Rings , 2008, 0803.0892.

[6]  George Lusztig,et al.  Canonical bases arising from quantized enveloping algebras , 1990 .

[7]  P. Kam,et al.  : 4 , 1898, You Can Cross the Massacre on Foot.

[8]  X. Fang,et al.  Toric Degenerations of Gr(2, n) and Gr(3, 6) via Plabic Graphs , 2016, Annals of Combinatorics.

[9]  P. Hacking,et al.  Compactification of the moduli space of hyperplane arrangements , 2005, math/0501227.

[10]  H. Hironaka Resolution of Singularities of an Algebraic Variety Over a Field of Characteristic Zero: II , 1964 .

[11]  Henrik Seppänen Okounkov bodies for ample line bundles with applications to multiplicities for group representations , 2014 .

[12]  B. M. Fulk MATH , 1992 .

[13]  Toric degenerations of spherical varieties , 2004, math/0403379.

[14]  K. Gravett ORDERED ABELIAN GROUPS , 1956 .

[15]  Kiumars Kaveh Crystal bases and Newton–Okounkov bodies , 2011, 1101.1687.

[16]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[17]  Randolph B. Tarrier,et al.  Groups , 1973 .

[18]  Kiumars Kaveh,et al.  Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory , 2009, 0904.3350.

[19]  BERND STURMFELS,et al.  Numerical Schubert Calculus , 1998, J. Symb. Comput..

[20]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[21]  R. Tennant Algebra , 1941, Nature.

[22]  David E. Speyer,et al.  The tropical Grassmannian , 2003, math/0304218.

[23]  M. Cueto IMPLICITIZATION OF SURFACES VIA GEOMETRIC TROPICALIZATION , 2011, 1105.0509.

[24]  David Anderson Okounkov bodies and toric degenerations , 2010, 1001.4566.

[25]  M. Brion The total coordinate ring of a wonderful variety , 2006, math/0603157.

[26]  L. Williams,et al.  Cluster duality and mirror symmetry for Grassmannians , 2015, 1507.07817.

[27]  Thomas Kahle,et al.  The Geometry of Gaussoids , 2017, Found. Comput. Math..

[28]  Toric degenerations of Schubert varieties , 2000, math/0012165.

[29]  A. Khovanskii,et al.  Mixed volume and an extension of intersection theory of divisors , 2008, 0812.0433.

[30]  B. Sturmfels,et al.  ELIMINATION THEORY FOR TROPICAL VARIETIES , 2007, 0704.3471.

[31]  EVGENY FEIGIN,et al.  FAVOURABLE MODULES: FILTRATIONS, POLYTOPES, NEWTON–OKOUNKOV BODIES AND FLAT DEGENERATIONS , 2013, 1306.1292.

[32]  R. Lathe Phd by thesis , 1988, Nature.

[33]  Tyler Foster,et al.  Hahn analytification and connectivity of higher rank tropical varieties , 2015, 1504.07207.

[34]  Why would multiplicities be log-concave ? , 2000 .

[35]  A. Werner,et al.  Skeletons and tropicalizations , 2014, 1404.7044.

[36]  S. Urbinati,et al.  Newton-Okounkov Bodies over Discrete Valuation Rings and Linear Systems on Graphs , 2016, 1609.06036.

[37]  On degenerations of projective varieties to complexity-one T-varieties , 2017, 1708.02698.

[38]  Manfred Göbel,et al.  Computing Bases for Rings of Permutation-Invariant Polynomials , 1995, J. Symb. Comput..

[39]  Paul Hacking,et al.  Canonical bases for cluster algebras , 2014, 1411.1394.

[40]  Christopher Manon Newton-Okounkov polyhedra for character varieties and configuration spaces , 2014, 1403.3990.

[41]  L. Williams,et al.  Newton–Okounkov bodies, cluster duality, and mirror symmetry for Grassmannians , 2017, Duke Mathematical Journal.