On the mechanism of rust exfoliation in marine environments

The authors gratefully acknowledge the financial support for this study from the Ministry of Science and Innovation of Spain (CICYT-MAT 2008–06649) and from the Swedish Science Foundation. The authors would like to express their gratitude to the companies ENEL and GAS NATURAL for the facilities provided and for allowing the location of the corrosion stations at Cabo Vilano wind farm (Camarinas, Spain).

[1]  Martin Stratmann,et al.  In situ Möβbauer spectroscopic study of reactions within rust layers , 1989 .

[2]  Hiroshi Kihira,et al.  Various Scale Analyses to Create Functioning Corrosion Products , 2006 .

[3]  H. Schwarz,et al.  Über die Wirkung des Magnetits beim atmosphärischen Rosten und beim Unterrosten von Anstrichen , 1972 .

[4]  Philippe Dillmann,et al.  Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system , 2005 .

[5]  M. Morcillo,et al.  Atmospheric corrosion of mild steel in chloride‐rich environments. Questions to be answered , 2015 .

[6]  P. Dillmann,et al.  Buried iron archaeological artefacts: Corrosion mechanisms related to the presence of Cl-containing phases , 2007 .

[7]  Daniel de la Fuente,et al.  Corrosión atmosférica marina de aceros al carbono , 2015 .

[8]  I. Guillot,et al.  Localisation of oxygen reduction sites in the case of iron long term atmospheric corrosion , 2011 .

[9]  Sw Dean,et al.  Degradation of Metals in the Atmosphere , 1987 .

[10]  K. Asami,et al.  In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years , 2003 .

[11]  Y. Waseda,et al.  Corrosion Mechanism of Iron from an X-ray Structural Viewpoint , 2006 .

[12]  Kazuhiko Noda,et al.  Electrochemical Behavior of Rust Formed on Carbon Steel in a Wet/Dry Environment Containing Chloride Ions , 2000 .

[13]  P. Refait,et al.  On the formation of -FeOOH (akaganite) in chloride-containing environments , 2007 .

[14]  J. Jiménez,et al.  Corrosion mechanisms of mild steel in chloride‐rich atmospheres , 2016 .

[15]  Ludovic Legrand,et al.  Raman imaging of ancient rust scales on archaeological iron artefacts for long‐term atmospheric corrosion mechanisms study , 2006 .

[16]  Joh.‐E. Hiller,et al.  Phasenumwandlungen im Rost , 1966 .

[17]  Martin Stratmann,et al.  The mechanism of the oxygen reduction on rust-covered metal substrates , 1994 .

[18]  T. Ishikawa,et al.  Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media , 2014 .

[19]  Iván Díaz,et al.  Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel , 2015 .

[20]  P. Dillmann,et al.  Corrosion of iron from heritage buildings: proposal for degradation indexes based on rust layer composition and electrochemical reactivity , 2010 .

[21]  V. Lair,et al.  Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron , 2006 .

[22]  Y. Waseda,et al.  Structural Characterization for a Complex System by Obtaining Middle-Range Ordering , 2006 .

[23]  Iván Díaz,et al.  Rust exfoliation on carbon steels in chloride-rich atmospheres , 2015 .

[24]  M. Abdelmoula,et al.  Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions , 1998 .

[25]  Ashutosh Kumar Singh,et al.  Mössbauer and x-ray diffraction phase analysis of rusts from atmospheric test sites with different environments in Sweden , 1985 .

[26]  Desmond C. Cook,et al.  Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments , 2005 .

[27]  P. Refait,et al.  The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite , 1997 .

[28]  P. Refait,et al.  Formation, fast oxidation and thermodynamic data of Fe(II) hydroxychlorides , 2008 .

[29]  U. R. Evans,et al.  MECHANISM OF ATMOSPHERIC RUSTING , 1972 .

[30]  M. Morcillo,et al.  Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity , 2013 .

[31]  Iván Díaz Ocaña Corrosión atmosférica de aceros patinables de nueva generación , 2012 .

[32]  Akemi Yasukawa,et al.  Formation of magnetite in the presence of ferric oxyhydroxides , 1998 .

[33]  Iván Díaz,et al.  Marine atmospheric corrosion of carbon steels , 2015 .

[34]  I. O. Wallinder,et al.  Atmospheric Corrosion : Second Edition , 2016 .

[35]  P. Dillmann,et al.  Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet–dry cycles , 2004 .

[36]  U. Schwertmann,et al.  The Transformation of Lepidocrocite to Goethite , 1972 .

[37]  A. Mackay β-Ferric Oxyhydroxide , 1960 .

[38]  M. Morcillo,et al.  Wet/dry accelerated laboratory test to simulate the formation of multilayered rust on carbon steel in marine atmospheres , 2017 .

[39]  Kurt Nielsen,et al.  On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts , 2003 .

[40]  修一 原,et al.  耐候性鋼橋梁に生成した層状剥離さび層局所の放射光 XRD 解析 , 2007 .

[41]  P. Refait,et al.  The oxidation of ferrous hydroxide in chloride-containing aqueous media and pourbaix diagrams of green rust one , 1993 .

[42]  Katsuhiko Asami Characterization of Rust Layers on a Plain-Carbon Steel and Weathering Steels Exposed to Industrial and Coastal Atmosphere for Years , 2006 .

[43]  T. Ohtsuka,et al.  Monitoring the development of rust layers on weathering steel using in situ Raman spectroscopy under wet-and-dry cyclic conditions , 2015, Journal of Solid State Electrochemistry.

[44]  H. Rietveld A profile refinement method for nuclear and magnetic structures , 1969 .

[45]  J. Jiménez,et al.  Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization , 2015 .

[46]  S. Hara A X-Ray Diffraction Analysis on Constituent Distribution of Heavy Rust Layer Formed on Weathering Steel Using Synchrotron Radiation , 2008 .