On the mechanism of rust exfoliation in marine environments
暂无分享,去创建一个
Daniel de la Fuente | Christofer Leygraf | Manuel Morcillo | Belén Chico | I. O. Wallinder | C. Leygraf | M. Morcillo | D. Fuente | B. Chico | I. Odnevall Wallinder | J. Alcántara | J. Alcántara
[1] Martin Stratmann,et al. In situ Möβbauer spectroscopic study of reactions within rust layers , 1989 .
[2] Hiroshi Kihira,et al. Various Scale Analyses to Create Functioning Corrosion Products , 2006 .
[3] H. Schwarz,et al. Über die Wirkung des Magnetits beim atmosphärischen Rosten und beim Unterrosten von Anstrichen , 1972 .
[4] Philippe Dillmann,et al. Corrosion of iron archaeological artefacts in soil: characterisation of the corrosion system , 2005 .
[5] M. Morcillo,et al. Atmospheric corrosion of mild steel in chloride‐rich environments. Questions to be answered , 2015 .
[6] P. Dillmann,et al. Buried iron archaeological artefacts: Corrosion mechanisms related to the presence of Cl-containing phases , 2007 .
[7] Daniel de la Fuente,et al. Corrosión atmosférica marina de aceros al carbono , 2015 .
[8] I. Guillot,et al. Localisation of oxygen reduction sites in the case of iron long term atmospheric corrosion , 2011 .
[9] Sw Dean,et al. Degradation of Metals in the Atmosphere , 1987 .
[10] K. Asami,et al. In-depth distribution of rusts on a plain carbon steel and weathering steels exposed to coastal-industrial atmosphere for 17 years , 2003 .
[11] Y. Waseda,et al. Corrosion Mechanism of Iron from an X-ray Structural Viewpoint , 2006 .
[12] Kazuhiko Noda,et al. Electrochemical Behavior of Rust Formed on Carbon Steel in a Wet/Dry Environment Containing Chloride Ions , 2000 .
[13] P. Refait,et al. On the formation of -FeOOH (akaganite) in chloride-containing environments , 2007 .
[14] J. Jiménez,et al. Corrosion mechanisms of mild steel in chloride‐rich atmospheres , 2016 .
[15] Ludovic Legrand,et al. Raman imaging of ancient rust scales on archaeological iron artefacts for long‐term atmospheric corrosion mechanisms study , 2006 .
[16] Joh.‐E. Hiller,et al. Phasenumwandlungen im Rost , 1966 .
[17] Martin Stratmann,et al. The mechanism of the oxygen reduction on rust-covered metal substrates , 1994 .
[18] T. Ishikawa,et al. Formation of magnetite rust particles by reacting iron powder with artificial α-, β- and γ-FeOOH in aqueous media , 2014 .
[19] Iván Díaz,et al. Airborne chloride deposit and its effect on marine atmospheric corrosion of mild steel , 2015 .
[20] P. Dillmann,et al. Corrosion of iron from heritage buildings: proposal for degradation indexes based on rust layer composition and electrochemical reactivity , 2010 .
[21] V. Lair,et al. Electrochemical reduction of ferric corrosion products and evaluation of galvanic coupling with iron , 2006 .
[22] Y. Waseda,et al. Structural Characterization for a Complex System by Obtaining Middle-Range Ordering , 2006 .
[23] Iván Díaz,et al. Rust exfoliation on carbon steels in chloride-rich atmospheres , 2015 .
[24] M. Abdelmoula,et al. Mechanisms of formation and structure of green rust one in aqueous corrosion of iron in the presence of chloride ions , 1998 .
[25] Ashutosh Kumar Singh,et al. Mössbauer and x-ray diffraction phase analysis of rusts from atmospheric test sites with different environments in Sweden , 1985 .
[26] Desmond C. Cook,et al. Spectroscopic identification of protective and non-protective corrosion coatings on steel structures in marine environments , 2005 .
[27] P. Refait,et al. The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite , 1997 .
[28] P. Refait,et al. Formation, fast oxidation and thermodynamic data of Fe(II) hydroxychlorides , 2008 .
[29] U. R. Evans,et al. MECHANISM OF ATMOSPHERIC RUSTING , 1972 .
[30] M. Morcillo,et al. Atmospheric corrosion of Ni-advanced weathering steels in marine atmospheres of moderate salinity , 2013 .
[31] Iván Díaz Ocaña. Corrosión atmosférica de aceros patinables de nueva generación , 2012 .
[32] Akemi Yasukawa,et al. Formation of magnetite in the presence of ferric oxyhydroxides , 1998 .
[33] Iván Díaz,et al. Marine atmospheric corrosion of carbon steels , 2015 .
[34] I. O. Wallinder,et al. Atmospheric Corrosion : Second Edition , 2016 .
[35] P. Dillmann,et al. Advances in understanding atmospheric corrosion of iron. II. Mechanistic modelling of wet–dry cycles , 2004 .
[36] U. Schwertmann,et al. The Transformation of Lepidocrocite to Goethite , 1972 .
[37] A. Mackay. β-Ferric Oxyhydroxide , 1960 .
[38] M. Morcillo,et al. Wet/dry accelerated laboratory test to simulate the formation of multilayered rust on carbon steel in marine atmospheres , 2017 .
[39] Kurt Nielsen,et al. On the akaganéite crystal structure, phase transformations and possible role in post-excavational corrosion of iron artifacts , 2003 .
[40] 修一 原,et al. 耐候性鋼橋梁に生成した層状剥離さび層局所の放射光 XRD 解析 , 2007 .
[41] P. Refait,et al. The oxidation of ferrous hydroxide in chloride-containing aqueous media and pourbaix diagrams of green rust one , 1993 .
[42] Katsuhiko Asami. Characterization of Rust Layers on a Plain-Carbon Steel and Weathering Steels Exposed to Industrial and Coastal Atmosphere for Years , 2006 .
[43] T. Ohtsuka,et al. Monitoring the development of rust layers on weathering steel using in situ Raman spectroscopy under wet-and-dry cyclic conditions , 2015, Journal of Solid State Electrochemistry.
[44] H. Rietveld. A profile refinement method for nuclear and magnetic structures , 1969 .
[45] J. Jiménez,et al. Environmental conditions for akaganeite formation in marine atmosphere mild steel corrosion products and its characterization , 2015 .
[46] S. Hara. A X-Ray Diffraction Analysis on Constituent Distribution of Heavy Rust Layer Formed on Weathering Steel Using Synchrotron Radiation , 2008 .