Simultaneous diophantine approximation with excluded primes

Given real numbers α<inf>1</inf>,...,α<inf><i>n</i></inf>, a simultaneous diophantine ε-approximation is a sequence of integers <i>P</i><inf>1</inf>,..., <i>P<inf>n</inf></i>, <i>Q</i> such that <i>Q</i> < 0 and for all <i>j</i> ∈ {1,...,<i>n</i>}, |<i>Q</i><inf>αj</inf>-<i>P</i><inf><i>j</i></inf>| ≤ ε. A simultaneous diophantine approximation is said to exclude the prime <i>p</i> if <i>Q</i> is not divisible by <i>p.</i> Given real numbers α<inf>1</inf>,...,α<inf><i>n</i></inf>, a prime <i>p</i> and ε > 0 we show that at least one of the following holds:<b>(a)</b>there is a simultaneous diophantine ε-approximation which excludes <i>p</i>, or<b>(b)</b>there exist <i>a</i><inf>1</inf>,...,<i>a<inf>n</inf></i> ∈ ℤ such that Σ<i>a</i><inf><i>j</i></inf>α<inf><i>j</i></inf> = 1/p + <i>t, t</i> ∈ ℤ and Σ|<i>a</i><inf><i>j</i></inf>|≤<i>n</i><sup>3/2</sup>|εNote that these two conditions are mutually nearly exclusive in the sense that in case (b) the <i>a<inf>j</inf></i> witness that there is no simultaneous diophantine ε/ (<i>n<sup>3/2</sup>p</i>)-approximation excluding <i>p</i>. The proof method is Fourier analysis using results and techniques of Banaszczyk [Ban93].As an application we show that for <i>p</i> a prime and bounded <i>d/p</i> -- 1 the ring <i>ℤ/p<sup>k</sup>ℤ</i> contains a number all of whose <i>d</i>-th roots (mod <i>p<sup>k</sup></i>) are small.We generalize the result to simultaneous diophantine ε-approximations excluding several primes and consider the algorithmic problem of finding, in polynomial time, a simultaneous diophantine ε-approximation excluding a set of primes.

[1]  W. Banaszczyk New bounds in some transference theorems in the geometry of numbers , 1993 .

[2]  László Babai,et al.  Locally testable cyclic codes , 2003, 44th Annual IEEE Symposium on Foundations of Computer Science, 2003. Proceedings..

[3]  Adi Shamir,et al.  A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[4]  Jeffrey C. Lagarias,et al.  Knapsack Public Key Cryptosystems and Diophantine Approximation , 1983, CRYPTO.

[5]  Jeffrey C. Lagarias,et al.  The computational complexity of simultaneous Diophantine approximation problems , 1982, 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982).

[6]  László Babai,et al.  On Lovász’ lattice reduction and the nearest lattice point problem , 1986, Comb..

[7]  P. T. Bateman Note on the coefficients of the cyclotomic polynomial , 1949 .

[8]  László Lovász,et al.  Algorithmic theory of numbers, graphs and convexity , 1986, CBMS-NSF regional conference series in applied mathematics.

[9]  J. Cassels,et al.  An Introduction to Diophantine Approximation , 1957 .

[10]  A. Shamir A polynomial time algorithm for breaking the basic Merkle-Hellman cryptosystem , 1982, FOCS 1982.

[11]  László Lovász,et al.  Factoring polynomials with rational coefficients , 1982 .

[12]  A. Odlyzko,et al.  Disproof of the Mertens conjecture. , 1984 .

[13]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[14]  P. Erdös On the coefficients of the Cyclotomic polynomial , 1946 .