Multimodel for the coupling of several dc/dc power converters on a dc bus

This paper concerns multisource renewable energy systems. It describes the design of an average state space model that brings a detailed physical explanation of the coupling and uncoupling of several dc/dc power converters on a dc bus. A multimodel is proposed for that purpose, which consists in a mathematical generic expression whose parameters change according to the dc/dc power converters coupled on the dc bus. This multimodel can be used as support for the design of hybrid control laws in order to optimize the energies transfers, according to the sources power variations and the load characteristics. It takes into account conduction losses in dc/dc power converters and makes it possible to evaluate the efficiency of the equipment.

[1]  Keith O Mitchell,et al.  Simulation and optimisation of renewable energy systems , 2005 .

[2]  Robert W. Erickson,et al.  DC–DC Power Converters , 2007 .

[3]  K. Strunz,et al.  Hybrid plant of renewable stochastic source and multilevel storage for emission-free deterministic power generation , 2003, CIGRE/IEEE PES International Symposium Quality and Security of Electric Power Delivery Systems, 2003. CIGRE/PES 2003..

[4]  Per Karlsson DC Distributed Power Systems - Analysis, Design and Control for a Renewable Energy System , 2002 .

[5]  Chih-Min Lin,et al.  Type-2 fuzzy controller design using a sliding-mode approach for application to DC-DC converters , 2005 .

[6]  F.C. Lee,et al.  Design considerations for high-voltage high-power full-bridge zero-voltage-switched PWM converter , 1990, Fifth Annual Proceedings on Applied Power Electronics Conference and Exposition.

[7]  P. Karlsson,et al.  DC bus voltage control for a distributed power system , 2003 .

[8]  J. Van den Keybus,et al.  Distributed control of renewable generation units with integrated active filter , 2004, IEEE Transactions on Power Electronics.

[9]  Adam Mirecki,et al.  Etude comparative de chaînes de conversion d'énergie dédiées à une éolienne de petite puissance , 2005 .

[10]  Iulian Munteanu,et al.  A TWO LOOP OPTIMAL CONTROL OF FLEXIBLE DRIVE TRAIN VARIABLE SPEED WIND POWER SYSTEMS , 2005 .

[11]  Geoffrey R. Walker,et al.  Evaluating MPPT Converter Topologies Using a Matlab PV Model , 2000 .

[12]  Jian Sun,et al.  Symbolic analysis methods for averaged modeling of switching power converters , 1997 .

[13]  G. Cho,et al.  A zero-voltage and zero-current switching full bridge DC-DC converter with transformer isolation , 2001 .

[14]  T. M. Rueda,et al.  Control in variable speed wind turbines based on synchronous generators , 2005 .

[15]  K. J. Karimi,et al.  Modeling, simulation, and verification of large DC power electronics systems , 1996, PESC Record. 27th Annual IEEE Power Electronics Specialists Conference.

[16]  Ping-Zong Lin,et al.  Type-2 fuzzy controller design using a sliding-mode approach for application to DC – DC converters , 2000 .

[17]  Jörgen Svensson,et al.  DC Bus Voltage Control for Renewable Energy Distributed Power Systems , 2002 .

[18]  F. L. Luo,et al.  Design and analysis of adaptive sliding-mode-like controller for DC-DC converters , 2006 .

[19]  Saifur Rahman,et al.  A decision support technique for the design of hybrid solar-wind power systems , 1998 .

[20]  F. Valenciaga,et al.  Supervisor control for a stand-alone hybrid generation system using wind and photovoltaic energy , 2005, IEEE Transactions on Energy Conversion.

[21]  Elton Pepa,et al.  Adaptive Control of a Step-Up Full-Bridge DC-DC Converter for Variable Low Input Voltage Applications , 2004 .

[22]  Michael D. Lemmon,et al.  Supervisory hybrid systems , 1999 .

[23]  Olivier Gergaud,et al.  Modélisation énergétique et optimisation économique d'un système de production éolien et photovoltaïque couplé au réseau et associé à un accumulateur , 2002 .