A Large-Diameter Cryogenic Rotation Stage for Half-Wave Plate Polarization Modulation on the POLARBEAR-2 Experiment
暂无分享,去创建一个
Adrian T. Lee | Aritoki Suzuki | Yuki Sakurai | Tomotake Matsumura | Oliver Jeong | Akito Kusaka | A. Lee | O. Jeong | A. Suzuki | A. Kusaka | C. Hill | F. Matsuda | P. Barton | Mael Flament | A. Madurowicz | Adam Rutkowski | Bryce Bixler | Charles A. Hill | Paul Barton | Alex G. Droster | Suhas Ganjam | Arian Jadbabaie | Alex Madurowicz | Fred T. Matsuda | Danielle R. Sponseller | Raymond Tat | A. Droster | B. Bixler | R. Tat | Y. Sakurai | A. Jadbabaie | T. Matsumura | S. Ganjam | M. Flament | A. Rutkowski | D. R. Sponseller
[1] N. Jarosik,et al. Systematic effects from an ambient-temperature, continuously rotating half-wave plate. , 2016, The Review of scientific instruments.
[2] J. Hull. Effect of permanent-magnet irregularities in levitation force measurements , 1999 .
[3] Britt Reichborn-Kjennerud,et al. The performance of the bolometer array and readout system during the 2012/2013 flight of the E and B experiment (EBEX) , 2014, Astronomical Telescopes and Instrumentation.
[4] U. Seljak,et al. Signature of gravity waves in polarization of the microwave background , 1996, astro-ph/9609169.
[5] S. Utsunomiya,et al. Design and Performance of a Prototype Polarization Modulator Rotational System for Use in Space Using a Superconducting Magnetic Bearing , 2016, IEEE Transactions on Applied Superconductivity.
[6] Peter Ade,et al. The POLARBEAR experiment , 2012, Other Conferences.
[7] P. Ade,et al. The Simons Array CMB polarization experiment , 2016, Astronomical Telescopes + Instrumentation.
[8] Matias Zaldarriaga,et al. Direct signature of an evolving gravitational potential from the cosmic microwave background , 1999 .
[9] G. P. Teply,et al. POLARBEAR-2: an instrument for CMB polarization measurements , 2016, Astronomical Telescopes + Instrumentation.
[10] Beck Wolfgang,et al. 遅延線陽極を持つMCP PMTに基づく広視野TCSPC FLIMシステム , 2016 .
[11] Julian Borrill,et al. Performance of a continuously rotating half-wave plate on the POLARBEAR telescope , 2017, 1702.07111.
[12] Albert Stebbins,et al. A Probe of Primordial Gravity Waves and Vorticity , 1997 .
[13] Edward J. Wollack,et al. Advanced ACTPol Cryogenic Detector Arrays and Readout , 2015, 1510.02809.
[14] U. Seljak,et al. An all sky analysis of polarization in the microwave background , 1996, astro-ph/9609170.
[15] Brian Keating,et al. Design and development of an ambient-temperature continuously-rotating achromatic half-wave plate for CMB polarization modulation on the POLARBEAR-2 experiment , 2016, Astronomical Telescopes + Instrumentation.
[16] C. P. Bean,et al. Magnetization of High-Field Superconductors , 1964 .
[17] P. A. R. Ade,et al. MAXIPOL: Cosmic Microwave Background Polarimetry Using a Rotating Half-Wave Plate , 2006, astro-ph/0611394.
[18] Yuh-Jing Hwang,et al. Strategies on solar observation of Atacama Large Millimeter/submillimeter Array (ALMA) band-1 receiver , 2016, Astronomical Telescopes + Instrumentation.
[19] Peter Ade,et al. A cryogenic rotation stage with a large clear aperture for the half-wave plates in the Spider instrument. , 2015, The Review of scientific instruments.
[20] P. A. R. Ade,et al. The POLARBEAR-2 and Simons Array Focal Plane Fabrication Status , 2018, Journal of Low Temperature Physics.
[21] M. Zeisberger,et al. Losses in magnetic bearings , 1998 .
[22] Matias Zaldarriaga,et al. Reconstructing projected matter density power spectrum from cosmic microwave background , 1999 .
[23] B Smiley,et al. A large-diameter hollow-shaft cryogenic motor based on a superconducting magnetic bearing for millimeter-wave polarimetry. , 2017, The Review of scientific instruments.
[24] M. Nolta,et al. Modulation of cosmic microwave background polarization with a warm rapidly rotating half-wave plate on the Atacama B-Mode Search instrument. , 2013, The Review of scientific instruments.