The MeteoMet project – metrology for meteorology: challenges and results

The study describes significant outcomes of the Metrology for Meteorology' project, MeteoMet, which is an attempt to bridge the meteorological and metrological communities. The concept of traceability, an idea used in both fields but with a subtle difference in meaning, is at the heart of the project. For meteorology, a traceable measurement is the one that can be traced back to a particular instrument, time and location. From a metrological perspective, traceability further implies that the measurement can be traced back to a primary realization of the quantity being measured in terms of the base units of the International System of Units, the SI. These two perspectives reflect long-standing differences in culture and practice and this project - and this study - represents only the first step towards better communication between the two communities. The 3 year MeteoMet project was funded by the European Metrology Research Program (EMRP) and involved 18 European National Metrological Institutes, 3 universities and 35 collaborating stakeholders including national meteorology organizations, research institutes, universities, associations and instrument companies. The project brought a metrological perspective to several long-standing measurement problems in meteorology and climatology, varying from conventional ground-based measurements to those made in the upper atmosphere. It included development and testing of novel instrumentation as well as improved calibration procedures and facilities, instrument intercomparison under realistic conditions and best practice dissemination. Additionally, the validation of historical temperature data series with respect to measurement uncertainties and a methodology for recalculation of the values were included.

Jan M. Johansson | A. Merlone | G. Lopardo | Francesca Sanna | S A Bell | R. Benyon | R. A. Bergerud | F. Bertiglia | Jovan Bojkovski | N. Böse | Manola Brunet | A. Cappella | G. Coppa | D. del Campo | M. Dobre | Janko Drnovšek | Volker Ebert | Ragne Emardson | V. Fernicola | K. Flakiewicz | Tom Gardiner | C. Garcia-Izquierdo | E. Georgin | Alba Gilabert | A. Grykalowska | E. Grudniewicz | M. Heinonen | M. Holmsten | Domen Hudoklin | H. Kajastie | H. Kaykısızlı | P. Klason | L. Kňazovická | Antti Lakka | Aleksandra Kowal | H. Müller | Chiara Musacchio | Javis Anyangwe Nwaboh | P. Pavlasek | Aline Piccato | Laurent Pitre | M de Podesta | M. K. Rasmussen | Hannu Sairanen | D. Smorgon | F. Sparasci | R. Strnad | A. Szmyrka‐ Grzebyk | R Underwood | J. Johansson | A. Gilabert | J. Drnovsek | V. Ebert | H. Sairanen | M. Brunet | G. Coppa | M. Heinonen | F. Bertiglia | R. Benyon | D. Campo | M. Dobre | V. Fernicola | D. Hudoklin | E. Grudniewicz | P. Klason | H. Kaykısızlı | G. Lopardo | A. Piccato | A. Grzebyk | A. Merlone | T. Gardiner | A. Cappella | J. Bojkovski | C. Musacchio | J. Nwaboh | J. Johansson | M. K. Rasmussen | F. Sanna | R. Emardson | C. Garcia-Izquierdo | E. Georgin | D. del Campo | S. Bell | M. de Podesta | L. Pitre | D. Smorgon | A. Lakka | F. Sparasci | V. Ebert | R. Strnad | A. Grykałowska | R. Underwood | A. Kowal | M. Holmsten | N. Böse | K. Flakiewicz | M. Podesta | L. Knazovicka | P. Pavlasek | H. Kajastie | M. Brunet | T. Gardiner | H. Müller | A. Szmyrka‐ Grzebyk

[1]  V. Ebert,et al.  Optical Path Length Calibration: A Standard Approach for Use in Absorption Cell-Based IR-Spectrometric Gas Analysis , 2014 .

[2]  V. Ebert,et al.  TDLAS-based open-path laser hygrometer using simple reflective foils as scattering targets , 2012 .

[3]  Arnold Wexler,et al.  Vapor Pressure Formulation for Water in Range 0 to 100 °C. A Revision , 1976, Journal of research of the National Bureau of Standards. Section A, Physics and chemistry.

[4]  Volker Ebert,et al.  Rapid, optical measurement of the atmospheric pressure on a fast research aircraft using open-path TDLAS , 2014 .

[5]  Volker Ebert,et al.  Spectral reference line data relevant to remote sensing applications: a review and outline of the EUMETRISPEC project , 2014, Remote Sensing.

[6]  V. Ebert,et al.  Offsets in fiber-coupled diode laser hygrometers caused by parasitic absorption effects and their prevention , 2014 .

[7]  Peter Domonkos,et al.  Benchmarking homogenization algorithms for monthly data , 2012 .

[8]  H. Preston‐Thomas,et al.  The International Temperature Scale of 1990 (ITS-90) , 1990 .

[9]  Volker Ebert,et al.  Laser-spectrometric gas analysis: CO2–TDLAS at 2 µm , 2012 .

[10]  Jan M. Johansson,et al.  Spatial interpolation of the atmospheric water vapor content between sites in a ground‐based GPS Network , 1998 .

[11]  K. Flakiewicz,et al.  Metrology for pressure, temperature, humidity and airspeed in the atmosphere , 2012 .

[12]  V. Ebert,et al.  Towards traceability in CO2 line strength measurements by TDLAS at 2.7 µm , 2013 .

[13]  Uwe Rascher,et al.  Absolute, high resolution water transpiration rate measurements on single plant leaves via tunable diode laser absorption spectroscopy (TDLAS) at 1.37 μm , 2008 .

[14]  V. Ebert,et al.  Line strength and collisional broadening coefficients of H2O at 2.7 μm for natural gas quality assurance applications , 2014 .

[15]  P. Mackrodt A New Attempt on a Coulometric Trace Humidity Generator , 2012 .

[16]  V. Vitale,et al.  Arctic metrology: calibration of radiosondes ground check sensors in Ny‐Ålesund , 2015 .

[17]  V. Ebert,et al.  Absolute validation of a diode laser hygrometer via intercomparison with the German national primary water vapor standard , 2014 .

[18]  F. Bertiglia,et al.  A calibration facility for automatic weather stations , 2015 .

[19]  Jan M. Johansson,et al.  A new challenge for meteorological measurements: The "MeteoMet" project - Metrology for meteorology , 2012 .

[20]  Per Jarlemark,et al.  Ground-Based GPS for Validation of Climate Models: The Impact of Satellite Antenna Phase Center Variations , 2010, IEEE Transactions on Geoscience and Remote Sensing.

[21]  D. Sonntag Important new values of the physical constants of 1986, vapour pressure formulations based on the ITS-90, and psychrometer formulae , 1990 .

[22]  A. Dreizler,et al.  Robust, spatially scanning, open-path TDLAS hygrometer using retro-reflective foils for fast tomographic 2-D water vapor concentration field measurements , 2014 .

[23]  M. Himbert,et al.  Development of a quasi-adiabatic calorimeter for the determination of the water vapor pressure curve. , 2012, The Review of scientific instruments.

[24]  Jessica R. Meyer,et al.  The AquaVIT-1 intercomparison of atmospheric water vapor measurement techniques , 2014 .

[25]  R. A. Bergerud,et al.  Effect of changes in temperature scales on historical temperature data , 2016 .

[26]  J. Mehl Second-order electromagnetic eigenfrequencies of a triaxial ellipsoid , 2015 .