Forage Allowance as a Target of Grazing Management: Implications on Grazing Time and Forage Searching

Abstract This work aimed to evaluate the following hypotheses: 1) the daily grazing time (GT) and 2) forage searching are more associated with the sward structure than with the levels of daily forage allowance (FA). To this end we proposed a model that was tested through an analysis of the sward structure, grazing time, and displacement in grazing by heifers on the natural grassland of the Pampa Biome (southern Brazil), which has been managed by FA levels since 1986. For three seasons, between January 2009 and February 2010, we evaluated the effect of FA on the main descriptors of the sward structure (herbage mass, sward height, and tussocks frequency) and the effect of these on the GT, displacement rate (DR), and daily displacement (D) in grazing. The data were analyzed with the use of regression and descriptive analyses from three-dimensional contour graphs with the data of the sward structure and GT. The DR was not associated with the FA levels or sward structure; however, the DR presented a positive linear relationship with the D and GT. The incremental change in the GT was accompanied by an increase in the D. Lastly, independently of the level of the FA and season evaluated, the lower values of GT were always associated with the following structural configuration: forage mass between 1 400 and 2 200 kg DM · ha−1, sward height between 9 and 13 cm, and tussock levels not exceeding 35%. Outside these limits, a penalty occurred in the GT and displacement patterns of the heifers. We found evidence that a better understanding of the cause–effect relationships between the sward structure and the ingestive behavior of the animals demonstrates the possibility of increasing the performance of domestic herbivores with important economic and ecological consequences. Resumen El objetivo del estudio fue evaluar las siguientes hipótesis: (i) si el tiempo de pastoreo diario (TP) y (ii) la búsqueda de forraje están más estrechamente relacionados a la estructura del pasto que a los niveles diarios de oferta de forraje (OF). Con este fin, propusimos un modelo que se puso a prueba en base al análisis de la estructura del pasto, el tiempo de pastoreo y el desplazamiento en pastoreo en terneras sobre un pastizal natural del Bioma Pampa (sur de Brasil) que, desde 1986, se ha manejado con distintos niveles de OF. En tres épocas, entre Ene/2009 y Feb/2010, se evaluó el efecto de la OF sobre los principales descriptores de la estructura del pasto (biomasa de forraje, altura y frecuencia de matas) y el efecto de éstos sobre el tiempo de pastoreo (TP), la tasa de desplazamiento (TD) y el desplazamiento diario (D). Los datos fueron analizados mediante regresión y por análisis descriptivos a partir de gráficos de contorno tridimensionales en base a los datos de estructura del pasto y TP. La TD no tuvo relación con OF ni con la estructura del pasto, pero mostró una relación lineal positiva con D. Incrementos en TP estuvieron asociados a incrementos en D. El estudio demostró la importancia de la estructura del pasto al constatar que, independientemente del nivel de OF y de la época del año evaluada, los valores más bajos de TP siempre estuvieron asociados a estructuras del pasto caracterizadas por una masa de forraje de 1 400 a 2 200 kg MS · ha−1, alturas de 9 a 13 cm y frecuencia de matas en el pastizal menores al 35%. Fuera de estos límites hubo una penalización en el TP y en el patrón de desplazamiento en pastoreo de las vaquillas. Encontramos evidencias de que el mejor entendimiento de las relaciones causa-efecto entre la estructura del pasto y el comportamiento en pastoreo harían posible incrementar el rendimiento de los herbívoros domésticos, con importantes consecuencias económicas y probablemente ecológicas.

[1]  José Acélio Silveira da Fontoura Júnior,et al.  Comportamento ingestivo de novilhos em pastagem nativa no Rio Grande do Sul , 2007 .

[2]  M. S. Cid,et al.  Heterogeneity in tall fescue pastures created and sustained by cattle grazing , 1998 .

[3]  M. Hirata,et al.  Short-term ingestive behaviour of cattle grazing tropical stoloniferous grasses with contrasting growth forms , 2010, The Journal of Agricultural Science.

[4]  E. Laca,et al.  Mechanisms that result in large herbivore grazing distribution patterns. , 1996 .

[5]  C. Batello,et al.  Access to land, livestock production and ecosystem conservation in the Brazilian Campos biome: The natural grasslands dilemma , 2009 .

[6]  José Acélio Silveira da Fontoura Júnior,et al.  Produção animal e de forragem em pastagem nativa submetida a distintas ofertas de forragem , 2005 .

[7]  J. Hodgson,et al.  Sward conditions, herbage allowance and animal production: an evaluation of research results , 1984 .

[8]  C. Nabinger,et al.  Estratégias de manejo da oferta de forragem para recria de novilhas em pastagem natural , 2009 .

[9]  W. Wales,et al.  Defoliation pattern, foraging behaviour and diet selection by lactating dairy cows in response to sward height and herbage allowance of a ryegrass-dominated pasture , 2003 .

[10]  Stefano Focardi,et al.  Do ungulates exhibit a food density threshold? A field study of optimal foraging and movement patterns , 1996 .

[11]  O. R. Pallares,et al.  The South American Campos ecosystem. , 2005 .

[12]  Derek W. Bailey Identification and Creation of Optimum Habitat Conditions for Livestock , 2005 .

[13]  P. C. F. D. Carvalho,et al.  Ajuste da carga animal em experimentos de pastejo: uma nova proposta , 2002 .

[14]  G. O. Mott Grazing pressure and the measurement of pasture production. , 1960 .

[15]  A. J. Rook,et al.  Foraging behaviour and diet selection in domestic herbivores , 1998 .

[16]  C. Legg,et al.  Impacts of sheep grazing a complex vegetation mosaic: Relating behaviour to vegetation change , 2008 .

[17]  G. Odell,et al.  Swarms of Predators Exhibit "Preytaxis" if Individual Predators Use Area-Restricted Search , 1987, The American Naturalist.

[18]  John G. Hodgson,et al.  The influence of sward canopy structure on foraging decisions by grazing cattle. I. Patch selection , 2003 .

[19]  Peter Turchin,et al.  Translating Foraging Movements in Heterogeneous Environments into the Spatial Distribution of Foragers , 1991 .

[20]  P. C. F. D. Carvalho,et al.  Relações planta-animal em ambiente pastoril heterogêneo: padrões de deslocamento e uso de estações alimentares , 2009 .

[21]  I. Gordon,et al.  The influence of vegetation pattern on the grazing of heather moorland by red deer and sheep. I: The location of animals on grass/heather mosaics , 1995 .

[22]  Igor Justin Carassai,et al.  Relações planta-animal em ambiente pastoril heterogêneo : processo de ingestão de forragem , 2009 .

[23]  T. Stobbs A comparison of zulu sorghum, bulrush millet and white panicum in terms of yield, forage quality and milk production , 1975 .

[24]  José Acélio Silveira da Fontoura Júnior,et al.  Produções primária e secundária de uma pastagem natural da Depressão Central do Rio Grande do Sul submetida a diversas ofertas de fitomassa aérea total , 2008 .

[25]  David F. Costello,et al.  Estimating Forage Yield by the Double‐Sampling Method1 , 1944 .

[26]  Alain Peeters,et al.  An international terminology for grazing lands and grazing animals , 2011 .

[27]  M. McCartor,et al.  Grazing Pressures and Animal Performance from Pearl Millet1 , 1977 .

[28]  Gilles Lemaire,et al.  Grassland Ecophysiology and Grazing Ecology , 2000 .

[29]  G. O. Mott,et al.  The Cage Method for Determining Consumption and Yield of Pasture Herbage1 , 1943 .

[30]  R. Jones,et al.  The relation between animal gain and stocking rate: Derivation of the relation from the results of grazing trials , 1974, The Journal of Agricultural Science.

[31]  B. Hess,et al.  Influence of supplementation on behavior of grazing cattle. , 1993, Journal of animal science.

[32]  D. McGilloway,et al.  Foraging behaviour and herbage intake in the favourable tropics/sub-tropics. , 2005 .

[33]  P. C. F. D. Carvalho,et al.  Potencial de um método acústico em quantificar as atividades de bovinos em pastejo , 2011 .

[34]  M. Gibb Grassland management with emphasis on grazing behaviour , 2007 .

[35]  Gilles Lemaire,et al.  Plant-animal interactions in complex plant communities: from mechanism to modelling. , 2000 .

[36]  H. Stanley,et al.  Optimizing the success of random searches , 1999, Nature.

[37]  M. Duru,et al.  Leaf Traits as Functional Descriptors of the Intensity of Continuous Grazing in Native Grasslands in the South of Brazil , 2010 .

[38]  Valério D. Pillar,et al.  Brazil's neglected biome: The South Brazilian Campos , 2007 .

[39]  I. Gordon,et al.  Foraging behaviour of sheep and red deer within natural heather/grass mosaics. , 1999 .

[40]  O. D. Marco,et al.  Energy expenditure due to forage intake and walking of grazing cattle , 2001 .

[41]  F. van Langevelde,et al.  Patch density determines movement patterns and foraging efficiency of large herbivores , 2007 .

[42]  P. Osuji The physiology of eating and the energy expenditure of the r uminant at pasture. , 1974 .

[43]  J. Hodgson Grazing management. Science into practice. , 1992 .

[44]  Frederic Bartumeus,et al.  ANIMAL SEARCH STRATEGIES: A QUANTITATIVE RANDOM‐WALK ANALYSIS , 2005 .

[45]  J. Brockway,et al.  A note on the energy cost of walking in cattle , 1977 .