Connectivity of cubical polytopes

A cubical polytope is a polytope with all its facets being combinatorially equivalent to cubes. We deal with the connectivity of the graphs of cubical polytopes. We first establish that, for any $d\ge 3$, the graph of a cubical $d$-polytope with minimum degree $\delta$ is $\min\{\delta,2d-2\}$-connected. Second, we show, for any $d\ge 4$, that every minimum separator of cardinality at most $2d-3$ in such a graph consists of all the neighbours of some vertex and that removing the vertices of the separator from the graph leaves exactly two components, with one of them being the vertex itself.

[1]  Hoa T. Bui,et al.  The linkedness of cubical polytopes , 2018, 1802.09230.

[2]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[3]  Gerd Blind,et al.  The almost simple cubical polytopes , 1998, Discret. Math..

[4]  Günter M. Ziegler,et al.  Construction and Analysis of Projected Deformed Products , 2010, Discret. Comput. Geom..

[5]  G. Ziegler Lectures on Polytopes , 1994 .

[6]  Mark Ramras Minimum cutsets in hypercubes , 2004, Discret. Math..

[7]  Paul Wollan,et al.  Generation of simple quadrangulations of the sphere , 2005, Discret. Math..

[8]  K. Menger Zur allgemeinen Kurventheorie , 1927 .

[9]  Günter M. Ziegler,et al.  Neighborly Cubical Polytopes , 2000, Discret. Comput. Geom..

[10]  G. Ziegler Lectures on 0/1-Polytopes , 1999, math/9909177.

[11]  G. T. Sallee Incidence graphs of convex polytopes , 1967 .

[12]  Eran Nevo,et al.  On the cone of $f$-vectors of cubical polytopes , 2017, Proceedings of the American Mathematical Society.

[13]  Jürgen Richter-Gebert Realization Spaces of Polytopes , 1996 .

[14]  Micha A. Perles,et al.  A Property of Graphs of Convex Polytopes , 1993, J. Comb. Theory, Ser. A.

[15]  Michel Balinski,et al.  On the graph structure of convex polyhedra in n-space , 1961 .