Insights into incipient soot formation by atomic force microscopy

[1]  M. Sirignano,et al.  Simulating the morphology of clusters of polycyclic aromatic hydrocarbons: The influence of the intermolecular potential , 2017 .

[2]  M. Sirignano,et al.  Chronic Obstructive Pulmonary Disease-Derived Circulating Cells Release IL-18 and IL-33 under Ultrafine Particulate Matter Exposure in a Caspase-1/8-Independent Manner , 2017, Front. Immunol..

[3]  Ö. Gülder,et al.  Raman Spectroscopy of Soot Sampled in High-Pressure Diffusion Flames , 2017 .

[4]  A. D’Anna,et al.  Illuminating the earliest stages of the soot formation by photoemission and Raman spectroscopy , 2017 .

[5]  O. Mullins,et al.  Heavy Oil Based Mixtures of Different Origins and Treatments Studied by Atomic Force Microscopy , 2017 .

[6]  J. Akroyd,et al.  Modelling PAH curvature in laminar premixed flames using a detailed population balance model , 2017 .

[7]  P. Liljeroth,et al.  Precursor Geometry Determines the Growth Mechanism in Graphene Nanoribbons , 2017 .

[8]  M. F. Campbell,et al.  Formation and emission of large furans and oxygenated hydrocarbons from flames , 2016, Proceedings of the National Academy of Sciences.

[9]  A. D’Anna,et al.  On the hydrophilic/hydrophobic character of carbonaceous nanoparticles formed in laminar premixed flames , 2016 .

[10]  Carolyn S. Brauer,et al.  Structural analysis of char by Raman spectroscopy: Improving band assignments through computational calculations from first principles , 2016 .

[11]  M. Kraft,et al.  PAH structure analysis of soot in a non-premixed flame using high-resolution transmission electron microscopy and optical band gap analysis , 2016 .

[12]  A. Peters,et al.  “Are we forgetting the smallest, sub 10 nm combustion generated particles?” , 2015, Particle and Fibre Toxicology.

[13]  A. D’Anna,et al.  Physicochemical evolution of nascent soot particles in a laminar premixed flame: From nucleation to early growth , 2015 .

[14]  Oliver C. Mullins,et al.  Unraveling the Molecular Structures of Asphaltenes by Atomic Force Microscopy. , 2015, Journal of the American Chemical Society.

[15]  J. H. Miller,et al.  Extinction measurements for optical band gap determination of soot in a series of nitrogen-diluted ethylene/air non-premixed flames. , 2015, Physical chemistry chemical physics : PCCP.

[16]  Antony J. Williams,et al.  The synthesis and STM/AFM imaging of 'olympicene' benzo[cd]pyrenes. , 2015, Chemistry.

[17]  Franz S. Ehrenhauser PAH and IUPAC Nomenclature , 2015 .

[18]  A. Seitsonen,et al.  Many-body transitions in a single molecule visualized by scanning tunnelling microscopy , 2015, Nature Physics.

[19]  M. Thomson,et al.  Molecular characterization of organic content of soot along the centerline of a coflow diffusion flame. , 2014, Physical chemistry chemical physics : PCCP.

[20]  P. Liljeroth,et al.  Intermolecular contrast in atomic force microscopy images without intermolecular bonds. , 2014, Physical review letters.

[21]  F. Stefan Tautz,et al.  Mechanism of high-resolution STM/AFM imaging with functionalized tips , 2014, 1406.3562.

[22]  A. D’Anna,et al.  Characterization of flame-generated 2-D carbon nano-disks , 2014 .

[23]  Angel Rubio,et al.  Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions , 2013, Science.

[24]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[25]  Johan Isaksson,et al.  A combined atomic force microscopy and computational approach for the structural elucidation of breitfussin A and B: highly modified halogenated dipeptides from Thuiaria breitfussi. , 2012, Angewandte Chemie.

[26]  Leo Gross,et al.  Bond-Order Discrimination by Atomic Force Microscopy , 2012, Science.

[27]  A. Curioni,et al.  A simple model of molecular imaging with noncontact atomic force microscopy , 2012 .

[28]  M. Kraft,et al.  A quantitative study of the clustering of polycyclic aromatic hydrocarbons at high temperatures. , 2012, Physical chemistry chemical physics : PCCP.

[29]  M. Smooke,et al.  A comparison of Raman signatures and laser-induced incandescence with direct numerical simulation of soot growth in non-premixed ethylene/air flames , 2011 .

[30]  Alessandro Curioni,et al.  High-resolution molecular orbital imaging using a p-wave STM tip. , 2011, Physical review letters.

[31]  E. Therssen,et al.  High-sensitivity detection of polycyclic aromatic hydrocarbons adsorbed onto soot particles using laser desorption/laser ionization/time-of-flight mass spectrometry: An approach to studying the soot inception process in low-pressure flames , 2011 .

[32]  Matthias Scheffler,et al.  Ab initio molecular simulations with numeric atom-centered orbitals , 2009, Comput. Phys. Commun..

[33]  Peter Liljeroth,et al.  Amplifying the Pacific Climate System Response to a Small 11-Year Solar Cycle Forcing , 2009, Science.

[34]  E. Eddings,et al.  FT-IR and 1H NMR characterization of the products of an ethylene inverse diffusion flame , 2006 .

[35]  J. Robertson,et al.  Bonding in hydrogenated diamond-like carbon by Raman spectroscopy , 2005 .

[36]  C. Joachim,et al.  Molecules on insulating films: scanning-tunneling microscopy imaging of individual molecular orbitals. , 2005, Physical review letters.

[37]  J. Robertson,et al.  Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[38]  Bin Zhao,et al.  Analysis of Soot Nanoparticles in a Laminar Premixed Ethylene Flame by Scanning Mobility Particle Sizer , 2003 .

[39]  Adel F. Sarofim,et al.  A reaction pathway for nanoparticle formation in rich premixed flames , 2001 .

[40]  Franz J. Giessibl,et al.  HIGH-SPEED FORCE SENSOR FOR FORCE MICROSCOPY AND PROFILOMETRY UTILIZING A QUARTZ TUNING FORK , 1998 .

[41]  Robert A. Fletcher,et al.  The evolution of soot precursor particles in a diffusion flame , 1998 .

[42]  K. Rieder,et al.  Controlled vertical manipulation of single CO molecules with the scanning tunneling microscope: A route to chemical contrast , 1997 .

[43]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[44]  M. Khan,et al.  Photoluminescence study of high quality InGaN–GaN single heterojunctions , 1996 .

[45]  M. Frenklach,et al.  Calculations of rate coefficients for the chemically activated reactions of acetylene with vinylic and aromatic radicals , 1994 .

[46]  P. Hendra,et al.  The laser-Raman spectrum of polyethylene: The assignment of the spectrum to fundamental modes of vibration , 1972 .

[47]  H. Michelsen Probing soot formation, chemical and physical evolution, and oxidation: A review of in situ diagnostic techniques and needs , 2017 .

[48]  J. Rouzaud,et al.  Soot nanostructure evolution in premixed flames by High Resolution Electron Transmission Microscopy (HRTEM) , 2015 .

[49]  A. D’Anna,et al.  Further details on particle inception and growth in premixed flames , 2015 .

[50]  A. Ciajolo,et al.  Dehydrogenation and growth of soot in premixed flames , 2015 .

[51]  A. Violi,et al.  Thermodynamics of poly-aromatic hydrocarbon clustering and the effects of substituted aliphatic chains , 2013 .

[52]  P. Desgroux,et al.  Study of the formation of soot and its precursors in flames using optical diagnostics , 2013 .

[53]  Hai Wang Formation of nascent soot and other condensed-phase materials in flames , 2011 .

[54]  Andrea D’Anna,et al.  Combustion-formed nanoparticles , 2009 .

[55]  A. Ciajolo,et al.  Mass spectrometric analysis of large PAH in a fuel-rich ethylene flame , 2007 .

[56]  Ian M. Kennedy,et al.  The health effects of combustion-generated aerosols , 2007 .

[57]  J. Howard Carbon addition and oxidation reactions in heterogeneous combustion and soot formation , 1991 .