TKS X: Confirmation of TOI-1444b and a Comparative Analysis of the Ultra-short-period Planets with Hot Neptunes

We report the discovery of TOI-1444b, a 1.4 R ⊕ super-Earth on a 0.47 day orbit around a Sun-like star discovered by TESS. Precise radial velocities from Keck/HIRES confirmed the planet and constrained the mass to be 3.87 ± 0.71M ⊕. The RV data set also indicates a possible nontransiting, 16 day planet (11.8 ± 2.9M ⊕). We report a tentative detection of phase-curve variation and a secondary eclipse of TOI-1444b in the TESS bandpass. TOI-1444b joins the growing sample of 17 ultra-short-period planets (USPs) with well-measured masses and sizes, most of which are compatible with an Earth-like composition. We take this opportunity to examine the expanding sample of ultra-short-period planets (<2R ⊕) and contrast them with the newly discovered sub-day ultrahot Neptunes (>3R ⊕, >2000F ⊕ TOI-849 b, LTT9779 b, and K2-100). We find that (1) USPs have predominately Earth-like compositions with inferred iron core mass fractions of 0.32 ± 0.04 and have masses below the threshold of runaway accretion (∼10M ⊕), while ultrahot Neptunes are above the threshold and have H/He or other volatile envelopes. (2) USPs are almost always found in multi-planet systems consistent with a secular interaction formation scenario; ultrahot Neptunes (P orb ≲1 day) tend to be “lonely,” similar to longer-period hot Neptunes (P orb1–10 days) and hot Jupiters. (3) USPs occur around solar-metallicity stars while hot Neptunes prefer higher metallicity hosts. (4) In all these respects, ultrahot Neptunes show more resemblance to hot Jupiters than the smaller USP planets, although ultrahot Neptunes are rarer than both USPs and hot Jupiters by 1–2 orders of magnitude.

[1]  J. Crepp,et al.  The California Legacy Survey. I. A Catalog of 178 Planets from Precision Radial Velocity Monitoring of 719 Nearby Stars over Three Decades , 2021, The Astrophysical Journal Supplement Series.

[2]  H. Isaacson,et al.  The TESS–Keck Survey. IV. A Retrograde, Polar Orbit for the Ultra-low-density, Hot Super-Neptune WASP-107b , 2021, The Astronomical Journal.

[3]  K. Stassun,et al.  The TESS-Keck Survey. II. An Ultra-short-period Rocky Planet and Its Siblings Transiting the Galactic Thick-disk Star TOI-561 , 2020, The Astronomical Journal.

[4]  Jorge Ibsen,et al.  Software and Cyberinfrastructure for Astronomy VI , 2021 .

[5]  F. Dai,et al.  No Escaping Helium from 55 Cnc e , 2020, The Astronomical Journal.

[6]  P. J. Richards,et al.  Gaia Early Data Release 3: Summary of the contents and survey properties , 2020, 2012.01533.

[7]  C. Henze,et al.  Phase Curves of Hot Neptune LTT 9779b Suggest a High-metallicity Atmosphere , 2020, The Astrophysical Journal.

[8]  J. Jenkins,et al.  Spitzer Reveals Evidence of Molecular Absorption in the Atmosphere of the Hot Neptune LTT 9779b , 2020, The Astrophysical Journal Letters.

[9]  David J Armstrong,et al.  An ultrahot Neptune in the Neptune desert , 2020, Nature Astronomy.

[10]  A. Bonomo,et al.  An unusually low density ultra-short period super-Earth and three mini-Neptunes around the old star TOI-561 , 2020, Monthly Notices of the Royal Astronomical Society.

[11]  S. Millholland,et al.  Formation of Ultra-short-period Planets by Obliquity-driven Tidal Runaway , 2020, The Astrophysical Journal.

[12]  K. Schlaufman,et al.  Ultra-short-period Planets Are Stable against Tidal Inspiral , 2020, The Astronomical Journal.

[13]  D. Huber,et al.  The Gaia–Kepler Stellar Properties Catalog. II. Planet Radius Demographics as a Function of Stellar Mass and Age , 2020, The Astronomical Journal.

[14]  A. Howard,et al.  California-Kepler Survey. IX. Revisiting the Minimum-mass Extrasolar Nebula with Precise Stellar Parameters , 2020, The Astronomical Journal.

[15]  Chelsea X. Huang,et al.  A remnant planetary core in the hot Neptunian desert , 2020, 2003.10314.

[16]  A. Bloch,et al.  Energy optimization in binary star systems: explanation for equal mass members in close orbits , 2020, 2003.10288.

[17]  Joseph E. Rodriguez,et al.  A Pair of TESS Planets Spanning the Radius Valley around the Nearby Mid-M Dwarf LTT 3780 , 2020, The Astronomical Journal.

[18]  J. Becker,et al.  Mutual Inclination Excitation by Stellar Oblateness , 2020, The Astrophysical Journal.

[19]  A. Bonomo,et al.  An ultra-short period rocky super-Earth orbiting the G2-star HD 80653 , 2020, Astronomy & Astrophysics.

[20]  Chelsea X. Huang,et al.  GJ 1252 b: A 1.2 R⊕ Planet Transiting an M3 Dwarf at 20.4 pc , 2019, The Astrophysical Journal.

[21]  J. Fortney,et al.  The Featureless Transmission Spectra of Two Super-puff Planets , 2019, The Astronomical Journal.

[22]  M. Tamura,et al.  Radial velocity confirmation of K2-100b: a young, highly irradiated, and low-density transiting hot Neptune , 2019, Monthly Notices of the Royal Astronomical Society.

[23]  K. Schlaufman,et al.  Hot Jupiters Are Destroyed by Tides While Their Host Stars Are on the Main Sequence , 2019, The Astronomical Journal.

[24]  Drake Deming,et al.  Absence of a thick atmosphere on the terrestrial exoplanet LHS 3844b , 2019, Nature.

[25]  J. Winn,et al.  Homogeneous Analysis of Hot Earths: Masses, Sizes, and Compositions , 2019, The Astrophysical Journal.

[26]  Eve J. Lee The Boundary between Gas-rich and Gas-poor Planets , 2019, The Astrophysical Journal.

[27]  David J Armstrong,et al.  HD 213885b: a transiting 1-d-period super-Earth with an Earth-like composition around a bright (V = 7.9) star unveiled by TESS , 2019, Monthly Notices of the Royal Astronomical Society.

[28]  F. Dai,et al.  Dusty Outflows in Planetary Atmospheres: Understanding “Super-puffs” and Transmission Spectra of Sub-Neptunes , 2019, The Astrophysical Journal.

[29]  A. Bonomo,et al.  So close, so different: characterization of the K2-36 planetary system with HARPS-N , 2019, Astronomy & Astrophysics.

[30]  D. Lai,et al.  Low-eccentricity migration of ultra-short-period planets in multiplanet systems , 2019, Monthly Notices of the Royal Astronomical Society.

[31]  F. Bouchy,et al.  K2-291b: A Rocky Super-Earth in a 2.2 day Orbit , 2019, The Astronomical Journal.

[32]  David J Armstrong,et al.  NGTS-4b: A sub-Neptune transiting in the desert , 2018, Monthly Notices of the Royal Astronomical Society.

[33]  Yanqin Wu,et al.  Ultra-short-period Planets from Secular Chaos , 2018, The Astronomical Journal.

[34]  J. Winn,et al.  Larger Mutual Inclinations for the Shortest-period Planets , 2018, The Astrophysical Journal.

[35]  C. Moutou,et al.  The 55 Cancri system reassessed , 2018, Astronomy & Astrophysics.

[36]  Mark Bowman,et al.  Real-time processing of the imaging data from the network of Las Cumbres Observatory Telescopes using BANZAI , 2018, Astronomical Telescopes + Instrumentation.

[37]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[38]  David J Armstrong,et al.  An Earth-sized exoplanet with a Mercury-like composition , 2018, Nature Astronomy.

[39]  John Asher Johnson,et al.  Origins of Hot Jupiters , 2018, Annual Review of Astronomy and Astrophysics.

[40]  F. Bouchy,et al.  An Ultra-short Period Rocky Super-Earth with a Secondary Eclipse and a Neptune-like Companion around K2-141 , 2018, 1801.03502.

[41]  Sarah Blunt,et al.  RadVel: The Radial Velocity Modeling Toolkit , 2018, 1801.01947.

[42]  S. Csizmadia,et al.  K2-141 b: A 5- M ⊗ super-Earth transiting a K7 v star every 6.7 h , 2017, 1711.02097.

[43]  S. Csizmadia,et al.  K2-137 b: an Earth-sized planet in a 4.3-h orbit around an M-dwarf , 2017, 1707.04549.

[44]  Songhu Wang,et al.  RV-detected Kepler-multi Analogs Exhibit Intra-system Mass Uniformity , 2017, 1711.06567.

[45]  Gregory Laughlin,et al.  Kepler Multi-planet Systems Exhibit Unexpected Intra-system Uniformity in Mass and Radius , 2017, 1710.11152.

[46]  R. Hu,et al.  A Case for an Atmosphere on Super-Earth 55 Cancri e , 2017, 1710.03342.

[47]  F. Bouchy,et al.  Precise Masses in the WASP-47 System , 2017, 1710.00026.

[48]  Zheng Zheng,et al.  LAMOST telescope reveals that Neptunian cousins of hot Jupiters are mostly single offspring of stars that are rich in heavy elements , 2017, Proceedings of the National Academy of Sciences.

[49]  Andrew Cumming,et al.  The California-Kepler Survey. V. Peas in a Pod: Planets in a Kepler Multi-planet System Are Similar in Size and Regularly Spaced , 2017, 1706.06204.

[50]  R. P. Butler,et al.  Three’s Company: An Additional Non-transiting Super-Earth in the Bright HD 3167 System, and Masses for All Three Planets , 2017, 1706.01892.

[51]  J. Zinn,et al.  Asteroseismology and Gaia: Testing Scaling Relations Using 2200 Kepler Stars with TGAS Parallaxes , 2017, 1705.04697.

[52]  R. P. Butler,et al.  K2-106, a system containing a metal-rich planet and a planet of lower density , 2017, 1705.04163.

[53]  P. Cargile,et al.  Absence of a Metallicity Effect for Ultra-short-period Planets , 2017, 1704.00203.

[54]  Howard Isaacson,et al.  The California-Kepler Survey. III. A Gap in the Radius Distribution of Small Planets , 2017, 1703.10375.

[55]  P. Cargile,et al.  The California-Kepler Survey. I. High-resolution Spectroscopy of 1305 Stars Hosting Kepler Transiting Planets , 2017, 1703.10400.

[56]  E. Lopez Born dry in the photoevaporation desert: Kepler's ultra-short-period planets formed water-poor , 2016, 1610.01170.

[57]  J. Steffen,et al.  A Population of planetary systems characterized by short-period, Earth-sized planets , 2016, Proceedings of the National Academy of Sciences.

[58]  Adam L. Kraus,et al.  ZODIACAL EXOPLANETS IN TIME (ZEIT). IV. SEVEN TRANSITING PLANETS IN THE PRAESEPE CLUSTER , 2016, 1609.00726.

[59]  Peter Tenenbaum,et al.  The TESS science processing operations center , 2016, Astronomical Telescopes + Instrumentation.

[60]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[61]  R. Gilliland,et al.  Hot super-Earths stripped by their host stars , 2016, Nature Communications.

[62]  Björn Benneke,et al.  A map of the large day–night temperature gradient of a super-Earth exoplanet , 2016, Nature.

[63]  M. Endl,et al.  ULTRA-SHORT-PERIOD PLANETS IN K2 SUPERPIG RESULTS FOR CAMPAIGNS 0–5 , 2016, 1603.06488.

[64]  Keivan G. Stassun,et al.  ASTROIMAGEJ: IMAGE PROCESSING AND PHOTOMETRIC EXTRACTION FOR ULTRA-PRECISE ASTRONOMICAL LIGHT CURVES , 2016, 1601.02622.

[65]  Dimitar Sasselov,et al.  MASS–RADIUS RELATION FOR ROCKY PLANETS BASED ON PREM , 2015, 1512.08827.

[66]  E. Chiang,et al.  BREEDING SUPER-EARTHS AND BIRTHING SUPER-PUFFS IN TRANSITIONAL DISKS , 2015, 1510.08855.

[67]  R. D'iaz,et al.  Hot Jupiters with relatives: discovery of additional planets in orbit around WASP-41 and WASP-47 , 2015, 1509.07750.

[68]  F. Adams,et al.  WASP-47: A HOT JUPITER SYSTEM WITH TWO ADDITIONAL PLANETS DISCOVERED BY K2 , 2015, 1508.02411.

[69]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[70]  E. Chiang,et al.  A Metallicity Recipe for Rocky Planets , 2015, 1506.06867.

[71]  Jon K. Zink,et al.  On the potentially dramatic history of the super-Earth ρ 55 Cancri e , 2015, 1505.05539.

[72]  R. Haywood,et al.  DETERMINING THE MASS OF KEPLER-78b WITH NONPARAMETRIC GAUSSIAN PROCESS ESTIMATION , 2015, 1501.00369.

[73]  A. Szentgyorgyi,et al.  THE MASS OF Kepler-93b AND THE COMPOSITION OF TERRESTRIAL PLANETS , 2014, 1412.8687.

[74]  L. Rogers MOST 1.6 EARTH-RADIUS PLANETS ARE NOT ROCKY , 2014, 1407.4457.

[75]  Andrew Szentgyorgyi,et al.  THE KEPLER-10 PLANETARY SYSTEM REVISITED BY HARPS-N: A HOT ROCKY WORLD AND A SOLID NEPTUNE-MASS PLANET , 2014, 1405.7881.

[76]  Michael C. Kotson,et al.  A STUDY OF THE SHORTEST-PERIOD PLANETS FOUND WITH KEPLER , 2014, 1403.2379.

[77]  T. Mazeh,et al.  ROTATION PERIODS OF 34,030 KEPLER MAIN-SEQUENCE STARS: THE FULL AUTOCORRELATION SAMPLE , 2014, 1402.5694.

[78]  A. Ofir Optimizing the search for transiting planets in long time series , 2013, 1307.7330.

[79]  Mark Clampin,et al.  Transiting Exoplanet Survey Satellite (TESS) , 2014, Astronomical Telescopes and Instrumentation.

[80]  Martin C. Stumpe,et al.  Multiscale Systematic Error Correction via Wavelet-Based Bandsplitting in Kepler Data , 2014 .

[81]  G. Marcy,et al.  Prevalence of Earth-size Planets Orbiting Sun-like Stars , 2015, 1510.03902.

[82]  J. Fortney,et al.  A rocky composition for an Earth-sized exoplanet , 2013, Nature.

[83]  E. Adams,et al.  A SURVEY FOR VERY SHORT-PERIOD PLANETS IN THE KEPLER DATA , 2013, 1308.1379.

[84]  D. Kipping Efficient, uninformative sampling of limb darkening coefficients for two-parameter laws , 2013, 1308.0009.

[85]  L. Rogers,et al.  THE ROCHE LIMIT FOR CLOSE-ORBITING PLANETS: MINIMUM DENSITY, COMPOSITION CONSTRAINTS, AND APPLICATION TO THE 4.2 hr PLANET KOI 1843.03 , 2013, 1307.4080.

[86]  A. Collier Cameron,et al.  Planets and Stellar Activity: Hide and Seek in the CoRoT-7 system , 2013, Proceedings of the International Astronomical Union.

[87]  D. Dragomir,et al.  Las Cumbres Observatory Global Telescope Network , 2013, 1305.2437.

[88]  Howard Isaacson,et al.  FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY , 2013, 1302.2624.

[89]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[90]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[91]  Xavier Bonfils,et al.  Hint of a transiting extended atmosphere on 55 Cancri b , 2012, 1210.0531.

[92]  Jeffery J. Kolodziejczak,et al.  Kepler Presearch Data Conditioning I—Architecture and Algorithms for Error Correction in Kepler Light Curves , 2012, 1203.1382.

[93]  S. Aigrain,et al.  Correction to: A simple method to estimate radial velocity variations due to stellar activity using photometry , 2011, Monthly Notices of the Royal Astronomical Society.

[94]  J. Winn,et al.  IMPROVED MODELING OF THE ROSSITER–McLAUGHLIN EFFECT FOR TRANSITING EXOPLANETS , 2011, 1108.4430.

[95]  Joshua N. Winn,et al.  STARSPOTS, SPIN–ORBIT MISALIGNMENT, AND ACTIVE LATITUDES IN THE HAT-P-11 EXOPLANETARY SYSTEM , 2011, 1107.2920.

[96]  Howard Isaacson,et al.  CHROMOSPHERIC ACTIVITY AND JITTER MEASUREMENTS FOR 2630 STARS ON THE CALIFORNIA PLANET SEARCH , 2010, 1009.2301.

[97]  Jie Li,et al.  Transiting planet search in the Kepler pipeline , 2010, Astronomical Telescopes + Instrumentation.

[98]  Jason T. Wright,et al.  THE CALIFORNIA PLANET SURVEY. I. FOUR NEW GIANT EXOPLANETS , 2010, 1003.3488.

[99]  Norman Murray,et al.  ATMOSPHERIC ESCAPE FROM HOT JUPITERS , 2008, 0811.0006.

[100]  Andrew Cumming,et al.  The Keck Planet Search: Detectability and the Minimum Mass and Orbital Period Distribution of Extrasolar Planets , 2008, 0803.3357.

[101]  A. Isella,et al.  Large dust grains in the inner region of circumstellar disks , 2006, astro-ph/0601438.

[102]  R. Schiavon,et al.  A library of high resolution synthetic stellar spectra from 300 nm to 1.8 μm with solar and α-enhanced composition , 2005, astro-ph/0505511.

[103]  J. Valenti,et al.  The Planet-Metallicity Correlation , 2005 .

[104]  R. Rafikov Atmospheres of Protoplanetary Cores: Critical Mass for Nucleated Instability , 2004, astro-ph/0405507.

[105]  S. Seager,et al.  A Unique Solution of Planet and Star Parameters from an Extrasolar Planet Transit Light Curve , 2002, astro-ph/0206228.

[106]  G. Kov'acs,et al.  A box-fitting algorithm in the search for periodic transits , 2002, astro-ph/0206099.

[107]  Klaus W. Hodapp,et al.  The Gemini Near‐Infrared Imager (NIRI) , 2000, Astronomical Telescopes and Instrumentation.

[108]  R. Paul Butler,et al.  Three New “51 Pegasi-Type” Planets , 1997 .

[109]  M. Couture,et al.  HIRES: the high-resolution echelle spectrometer on the Keck 10-m Telescope , 1994, Astronomical Telescopes and Instrumentation.

[110]  R. A. Williams Applying to graduate school. , 1987, The American journal of nursing.

[111]  J. Scargle Studies in astronomical time series analysis. II - Statistical aspects of spectral analysis of unevenly spaced data , 1982 .

[112]  N. Lomb Least-squares frequency analysis of unequally spaced data , 1976 .