Genetic Characteristics of Polycythemia Vera and Essential Thrombocythemia in Korean Patients

Despite recent advances in the investigation of myeloproliferative neoplasms (MPN), the impact of genetic heterogeneity on its molecular pathogenesis has not been fully elucidated. Thus, in this study, we aim to characterize the genetic complexity in Korean patients with polycythemia vera (PV) and essential thrombocythemia (ET).

[1]  Mingming Jia,et al.  COSMIC: exploring the world's knowledge of somatic mutations in human cancer , 2014, Nucleic Acids Res..

[2]  M. Cazzola,et al.  From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. , 2014, Blood.

[3]  T. Golub,et al.  Integrated genomic analysis illustrates the central role of JAK-STAT pathway activation in myeloproliferative neoplasm pathogenesis. , 2014, Blood.

[4]  R. Yang,et al.  Analysis of calreticulin mutations in Chinese patients with essential thrombocythemia: clinical implications in diagnosis, prognosis and treatment , 2014, Leukemia.

[5]  Christian Beisel,et al.  Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. , 2014, Blood.

[6]  M. Cazzola,et al.  JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. , 2014, Blood.

[7]  P. Guglielmelli,et al.  Impact of calreticulin mutations on clinical and hematological phenotype and outcome in essential thrombocythemia. , 2014, Blood.

[8]  A. Tefferi,et al.  Genetics: CALR mutations and a new diagnostic algorithm for MPN , 2014, Nature Reviews Clinical Oncology.

[9]  G. Superti-Furga,et al.  Somatic mutations of calreticulin in myeloproliferative neoplasms. , 2013, The New England journal of medicine.

[10]  J. D. Fitzpatrick,et al.  Somatic CALR mutations in myeloproliferative neoplasms with nonmutated JAK2. , 2013, The New England journal of medicine.

[11]  Y. Hinoda,et al.  JAK2 46/1 haplotype is associated with JAK2 V617F-positive myeloproliferative neoplasms in Japanese patients , 2013, International Journal of Hematology.

[12]  M. Guan,et al.  The JAK2 46/1 haplotype is a risk factor for myeloproliferative neoplasms in Chinese patients , 2012, International Journal of Hematology.

[13]  O. Abdel-Wahab,et al.  The role of mutations in epigenetic regulators in myeloid malignancies , 2012, Nature Reviews Cancer.

[14]  C. von Mering,et al.  PaxDb, a Database of Protein Abundance Averages Across All Three Domains of Life , 2012, Molecular & Cellular Proteomics.

[15]  Huanming Yang,et al.  Frequent mutations of genes encoding ubiquitin-mediated proteolysis pathway components in clear cell renal cell carcinoma , 2011, Nature Genetics.

[16]  Huanming Yang,et al.  Frequent mutations of chromatin remodeling genes in transitional cell carcinoma of the bladder , 2011, Nature Genetics.

[17]  L. Scott,et al.  The JAK2 exon 12 mutations: A comprehensive review , 2011, American journal of hematology.

[18]  L. Bullinger,et al.  DNMT3A mutations in myeloproliferative neoplasms , 2011, Leukemia.

[19]  Eric S. Lander,et al.  The genomic complexity of primary human prostate cancer , 2010, Nature.

[20]  Erin F. Simonds,et al.  Novel mutations in the inhibitory adaptor protein LNK drive JAK-STAT signaling in patients with myeloproliferative neoplasms. , 2010, Blood.

[21]  H. Drexler,et al.  Inactivating mutations of the histone methyltransferase gene EZH2 in myeloid disorders , 2010, Nature Genetics.

[22]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[23]  P. Campbell,et al.  The JAK2 46/1 haplotype predisposes to MPL-mutated myeloproliferative neoplasms. , 2010, Blood.

[24]  A. Tefferi,et al.  IDH1 and IDH2 mutation analysis in chronic- and blast-phase myeloproliferative neoplasms , 2010, Leukemia.

[25]  M. Cazzola,et al.  The ‘GGCC’ haplotype of JAK2 confers susceptibility to JAK2 exon 12 mutation-positive polycythemia vera , 2009, Leukemia.

[26]  R. Levine,et al.  Mutation in TET2 in myeloid cancers. , 2009, The New England journal of medicine.

[27]  Ashot Harutyunyan,et al.  A common JAK2 haplotype confers susceptibility to myeloproliferative neoplasms , 2009, Nature Genetics.

[28]  Kenneth Offit,et al.  A germline JAK2 SNP is associated with predisposition to the development of JAK2V617F-positive myeloproliferative neoplasms , 2009, Nature Genetics.

[29]  Andrew Collins,et al.  JAK2 haplotype is a major risk factor for the development of myeloproliferative neoplasms , 2009, Nature Genetics.

[30]  B. Fridley,et al.  Host genetic variation contributes to phenotypic diversity in myeloproliferative disorders. , 2008, Blood.

[31]  M. Cazzola,et al.  Somatic mutations of JAK2 exon 12 in patients with JAK2 (V617F)-negative myeloproliferative disorders. , 2008, Blood.

[32]  D. Gilliland,et al.  MPL515 mutations in myeloproliferative and other myeloid disorders: a study of 1182 patients. , 2006, Blood.

[33]  Sandra A. Moore,et al.  MPLW515L Is a Novel Somatic Activating Mutation in Myelofibrosis with Myeloid Metaplasia , 2006, PLoS medicine.

[34]  M. Wadleigh,et al.  The clinical phenotype of wild‐type, heterozygous, and homozygous JAK2V617F in polycythemia vera , 2006, Cancer.

[35]  S. Verstovsek,et al.  JAK2V617F mutational frequency in polycythemia vera: 100%, >90%, less? , 2006, Leukemia.

[36]  C. Carlson,et al.  Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. , 2004, American journal of human genetics.