Vector Gaussian Multiterminal Source Coding

We derive an outer bound of the rate region of the vector Gaussian L -terminal CEO problem by establishing a lower bound on each supporting hyperplane of the rate region. To this end, we prove a new extremal inequality by exploiting the connection between differential entropy and Fisher information as well as some fundamental estimation-theoretic inequalities. It is shown that the outer bound matches the Berger-Tung inner bound in the high-resolution regime. We then derive a lower bound on each supporting hyperplane of the rate region of the direct vector Gaussian L -terminal source coding problem by coupling it with the CEO problem through a limiting argument. The tightness of this lower bound in the high-resolution regime and the weak-dependence regime is also proved.

[1]  P. Viswanath,et al.  The Gaussian Many-Help-One Distributed Source Coding Problem , 2008, 2006 IEEE Information Theory Workshop - ITW '06 Chengdu.

[2]  Jun Chen,et al.  On the vector Gaussian L-terminal CEO problem , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[3]  F. Browder Nonlinear functional analysis , 1970 .

[4]  Bruno Lang,et al.  Existence Tests for Solutions of Nonlinear Equations Using Borsuk's Theorem , 2005, SIAM J. Numer. Anal..

[5]  Sennur Ulukus,et al.  An Outer Bound for the Vector Gaussian CEO Problem , 2014, IEEE Transactions on Information Theory.

[6]  Pramod Viswanath,et al.  Rate Region of the Quadratic Gaussian Two-Encoder Source-Coding Problem , 2005, IEEE Transactions on Information Theory.

[7]  Zhen Zhang,et al.  On the CEO problem , 1994, Proceedings of 1994 IEEE International Symposium on Information Theory.

[8]  Dimitri P. Bertsekas,et al.  Nonlinear Programming , 1997 .

[9]  Tie Liu,et al.  An Extremal Inequality Motivated by Multiterminal Information-Theoretic Problems , 2006, IEEE Transactions on Information Theory.

[10]  Shlomo Shamai,et al.  The Capacity Region of the Gaussian Multiple-Input Multiple-Output Broadcast Channel , 2006, IEEE Transactions on Information Theory.

[11]  Jun Chen,et al.  Vector Gaussian Two-Terminal Source Coding , 2013, IEEE Transactions on Information Theory.

[12]  Yasutada Oohama Distributed Source Coding of Correlated Gaussian Remote Sources , 2012, IEEE Trans. Inf. Theory.

[13]  Yasutada Oohama Gaussian multiterminal source coding , 1997, IEEE Trans. Inf. Theory.

[14]  Yasutada Oohama,et al.  Rate-distortion theory for Gaussian multiterminal source coding systems with several side informations at the decoder , 2005, IEEE Transactions on Information Theory.

[15]  Yasutada Oohama,et al.  Distributed Source Coding of Correlated Gaussian Sources , 2010, ArXiv.

[16]  Shlomo Shamai,et al.  Mutual information and minimum mean-square error in Gaussian channels , 2004, IEEE Transactions on Information Theory.

[17]  Shuangzhe Liu,et al.  Matrix results on the Khatri-Rao and Tracy-Singh products , 1999 .

[18]  Aaron B. Wagner,et al.  Rate Region of the Vector Gaussian One-Helper Source-Coding Problem , 2015, IEEE Transactions on Information Theory.

[19]  Vinod M. Prabhakaran,et al.  Rate region of the quadratic Gaussian CEO problem , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[20]  Venkat Anantharam,et al.  An improved outer bound for multiterminal source coding , 2008, IEEE Transactions on Information Theory.

[21]  Shlomo Shamai,et al.  The Capacity Region of the Degraded Multiple-Input Multiple-Output Compound Broadcast Channel , 2009, IEEE Transactions on Information Theory.

[22]  Amir Dembo,et al.  Information theoretic inequalities , 1991, IEEE Trans. Inf. Theory.

[23]  Toby Berger,et al.  The CEO problem [multiterminal source coding] , 1996, IEEE Trans. Inf. Theory.

[24]  Jun Chen,et al.  On vector Gaussian multiterminal source coding , 2014, 2012 IEEE Information Theory Workshop.

[25]  Jun Chen,et al.  On the Sum Rate of Gaussian Multiterminal Source Coding: New Proofs and Results , 2010, IEEE Transactions on Information Theory.

[26]  Toby Berger,et al.  An upper bound on the sum-rate distortion function and its corresponding rate allocation schemes for the CEO problem , 2004, IEEE Journal on Selected Areas in Communications.

[27]  Toby Berger,et al.  Multiterminal source encoding with encoder breakdown , 1989, IEEE Trans. Inf. Theory.

[28]  Zixiang Xiong,et al.  A New Sufficient Condition for Sum-Rate Tightness in Quadratic Gaussian Multiterminal Source Coding , 2013, IEEE Transactions on Information Theory.

[29]  Yasutada Oohama,et al.  The Rate-Distortion Function for the Quadratic Gaussian CEO Problem , 1998, IEEE Trans. Inf. Theory.

[30]  Sennur Ulukus,et al.  The Secrecy Capacity Region of the Gaussian MIMO Multi-Receiver Wiretap Channel , 2009, IEEE Transactions on Information Theory.

[31]  Toby Berger,et al.  The quadratic Gaussian CEO problem , 1997, IEEE Trans. Inf. Theory.

[32]  Shlomo Shamai,et al.  A Vector Generalization of Costa's Entropy-Power Inequality With Applications , 2009, IEEE Transactions on Information Theory.

[33]  P. Viswanath,et al.  On the Sum-rate of the Vector Gaussian CEO Problem , 2005, Conference Record of the Thirty-Ninth Asilomar Conference onSignals, Systems and Computers, 2005..