HACC: Simulating Sky Surveys on State-of-the-Art Supercomputing Architectures

Abstract Current and future surveys of large-scale cosmic structure are associated with a massive and complex datastream to study, characterize, and ultimately understand the physics behind the two major components of the ‘Dark Universe’, dark energy and dark matter. In addition, the surveys also probe primordial perturbations and carry out fundamental measurements, such as determining the sum of neutrino masses. Large-scale simulations of structure formation in the Universe play a critical role in the interpretation of the data and extraction of the physics of interest. Just as survey instruments continue to grow in size and complexity, so do the supercomputers that enable these simulations. Here we report on HACC (Hardware/Hybrid Accelerated Cosmology Code), a recently developed and evolving cosmology N-body code framework, designed to run efficiently on diverse computing architectures and to scale to millions of cores and beyond. HACC can run on all current supercomputer architectures and supports a variety of programming models and algorithms. It has been demonstrated at scale on Cell- and GPU-accelerated systems, standard multi-core node clusters, and Blue Gene systems. HACC’s design allows for ease of portability, and at the same time, high levels of sustained performance on the fastest supercomputers available. We present a description of the design philosophy of HACC, the underlying algorithms and code structure, and outline implementation details for several specific architectures. We show selected accuracy and performance results from some of the largest high resolution cosmological simulations so far performed, including benchmarks evolving more than 3.6 trillion particles.

[1]  Theoretical Models of the Halo Occupation Distribution: Separating Central and Satellite Galaxies , 2004, astro-ph/0408564.

[2]  W. M. Wood-Vasey,et al.  THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.

[3]  W. Braun,et al.  The Vlasov dynamics and its fluctuations in the 1/N limit of interacting classical particles , 1977 .

[4]  Carme Jordi,et al.  Highlights of Spanish Astrophysics IV , 2007 .

[5]  The application of Dewitt-Morette path integrals to general relativity , 1977 .

[6]  Martin White,et al.  What determines satellite galaxy disruption , 2009, 0907.0702.

[7]  G. Kauffmann,et al.  The formation and evolution of galaxies within merging dark matter haloes , 1993 .

[8]  Jan Swevers,et al.  Ground-based and airborne instrumentation for astronomy , 2010 .

[9]  S. White,et al.  How do galaxies populate dark matter haloes , 2009, 0909.4305.

[10]  D. Weinberg,et al.  The Halo Occupation Distribution: Toward an Empirical Determination of the Relation between Galaxies and Mass , 2001, astro-ph/0109001.

[11]  Earl Lawrence,et al.  THE COYOTE UNIVERSE. III. SIMULATION SUITE AND PRECISION EMULATOR FOR THE NONLINEAR MATTER POWER SPECTRUM , 2009, 0912.4490.

[12]  Jean M. Sexton,et al.  Nyx: A MASSIVELY PARALLEL AMR CODE FOR COMPUTATIONAL COSMOLOGY , 2013, J. Open Source Softw..

[13]  S. Habib,et al.  DARK MATTER HALO PROFILES OF MASSIVE CLUSTERS: THEORY VERSUS OBSERVATIONS , 2011, 1112.5479.

[14]  Walter Dehnen Towards optimal softening in three-dimensional N-body codes - I. Minimizing the force error , 2000 .

[15]  The nature of galaxy bias and clustering , 1999, astro-ph/9903343.

[16]  Andrew J. Benson,et al.  Galaxy formation theory , 2010, 1006.5394.

[17]  C. Baugh Luminosity Bias: From Haloes to Galaxies , 2013, Publications of the Astronomical Society of Australia.

[18]  David Higdon,et al.  Cosmic calibration: Constraints from the matter power spectrum and the cosmic microwave background , 2007 .

[19]  A. Kashlinsky,et al.  Large-scale structure in the Universe , 1991, Nature.

[20]  Katrin Heitmann,et al.  The Accelerated Universe , 2010, Computing in Science & Engineering.

[21]  Stephan Rosswog,et al.  A fast recursive coordinate bisection tree for neighbour search and gravity , 2011, 1108.0028.

[22]  G. Efstathiou,et al.  Numerical techniques for large cosmological N-body simulations , 1985 .

[23]  J. Ostriker,et al.  Linking halo mass to galaxy luminosity , 2004, astro-ph/0402500.

[24]  Michael S. Warren,et al.  Robustness of Cosmological Simulations. I. Large-Scale Structure , 2004, astro-ph/0411795.

[25]  C. Baugh,et al.  A primer on hierarchical galaxy formation: the semi-analytical approach , 2006, astro-ph/0610031.

[26]  Hal Finkel,et al.  COSMIC EMULATION: FAST PREDICTIONS FOR THE GALAXY POWER SPECTRUM , 2013, 1311.6444.

[27]  Piet Hut,et al.  A hierarchical O(N log N) force-calculation algorithm , 1986, Nature.

[28]  Jonathan Woodring,et al.  ANALYZING AND VISUALIZING COSMOLOGICAL SIMULATIONS WITH ParaView , 2010, 1010.6128.

[29]  Chung-Hsing Hsu,et al.  Hybrid petacomputing meets cosmology: The Roadrunner Universe project , 2009 .

[30]  R.H. Dennard,et al.  Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions , 1974, Proceedings of the IEEE.

[31]  André A. Costa,et al.  J-PAS: The Javalambre-Physics of the Accelerated Universe Astrophysical Survey , 2014, 1403.5237.

[32]  Jacques Denavit,et al.  Comparison of Numerical Solutions of the Vlasov Equation with Particle Simulations of Collisionless Plasmas , 1971 .

[33]  Hal Finkel,et al.  The Universe at extreme scale: Multi-petaflop sky simulation on the BG/Q , 2012, 2012 International Conference for High Performance Computing, Networking, Storage and Analysis.

[34]  S. White,et al.  The inner structure of ΛCDM haloes – I. A numerical convergence study , 2002, astro-ph/0201544.

[35]  Jeffrey S. Vetter,et al.  Contemporary High Performance Computing , 2017 .

[36]  Katrin Heitmann,et al.  PARTICLE MESH SIMULATIONS OF THE Lyα FOREST AND THE SIGNATURE OF BARYON ACOUSTIC OSCILLATIONS IN THE INTERGALACTIC MEDIUM , 2009, 0911.5341.

[37]  Michael A. West,et al.  The Oxford Handbook of Applied Bayesian Analysis , 2010, Oxford Handbooks Online.

[38]  R. Biswas,et al.  Large-scale structure formation with massive neutrinos and dynamical dark energy , 2013, 1309.5872.

[39]  Carlos S. Frenk,et al.  A recipe for galaxy formation , 1994 .

[40]  Shaun A. Thomas,et al.  Cosmology and Fundamental Physics with the Euclid Satellite , 2012, Living Reviews in Relativity.

[41]  R. Somerville,et al.  CONSTRAINTS ON THE RELATIONSHIP BETWEEN STELLAR MASS AND HALO MASS AT LOW AND HIGH REDSHIFT , 2009, 0903.4682.

[42]  G. Kauffmann,et al.  Galaxy formation and large scale bias , 1995, astro-ph/9512009.

[43]  Earl Lawrence,et al.  THE COYOTE UNIVERSE EXTENDED: PRECISION EMULATION OF THE MATTER POWER SPECTRUM , 2013, 1304.7849.

[44]  Katrin Heitmann,et al.  COSMIC EMULATION: THE CONCENTRATION–MASS RELATION FOR wCDM UNIVERSES , 2012, 1210.1576.

[45]  Nicole Fassbinder Highlights Of Spanish Astrophysics Iii , 2016 .

[46]  Spatial Correlation Function and Pairwise Velocity Dispersion of Galaxies: Cold Dark Matter Models versus the Las Campanas Survey , 1997, astro-ph/9707106.

[47]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[48]  S. Borgani,et al.  Simulation Techniques for Cosmological Simulations , 2008, 0801.1023.

[49]  David Higdon,et al.  Cosmic Calibration , 2006 .

[50]  Carlos S. Frenk,et al.  Galaxy formation through hierarchical clustering , 1991 .

[51]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[52]  P. Peebles,et al.  The Large-Scale Structure of the Universe , 1980 .

[53]  A. Klypin,et al.  Three-dimensional numerical model of the formation of large-scale structure in the Universe , 1983 .

[54]  David Schlegel,et al.  The DESI Experiment, a whitepaper for Snowmass 2013 , 2013, 1308.0847.

[55]  Bernard Muschielok,et al.  4MOST: 4-metre multi-object spectroscopic telescope , 2012, Other Conferences.

[56]  Edwin A. Valentijn,et al.  The Kilo-Degree Survey , 2012, Experimental Astronomy.

[57]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[58]  Viktor K. Decyk,et al.  An Object-Oriented Parallel Particle-in-Cell Code for Beam Dynamics Simulation in Linear Accelerators , 2000, International Conference on Software Composition.

[59]  R. Wechsler,et al.  Modeling Luminosity-dependent Galaxy Clustering through Cosmic Time , 2005, astro-ph/0512234.

[60]  Andrew A. Chien,et al.  The future of microprocessors , 2011, Commun. ACM.

[61]  U. Seljak Analytic model for galaxy and dark matter clustering , 2000, astro-ph/0001493.

[62]  Paul Gibbon,et al.  Many-body tree methods in physics , 1996 .

[63]  J. Peacock,et al.  Halo occupation numbers and galaxy bias , 2000, astro-ph/0005010.

[64]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[65]  D. Higdon,et al.  THE COYOTE UNIVERSE. I. PRECISION DETERMINATION OF THE NONLINEAR MATTER POWER SPECTRUM , 2008, 0812.1052.

[66]  Michael Wegner,et al.  Ground-based and Airborne Instrumentation for Astronomy III , 2010 .

[67]  John Dubinski,et al.  GOTPM: A Parallel Hybrid Particle-Mesh Treecode , 2004 .

[68]  U. California,et al.  Semi-analytic modelling of galaxy formation: The local Universe , 1998, astro-ph/9802268.