Using three-partite GHZ states for partial quantum error detection in entanglement-based protocols

The problem of noise incidence on qubits taking part of bipartite entanglement-based protocols is addressed. It is shown that the use of a three-partite GHZ state and measurements instead of their EPR counterparts allows the experimenter to detect 2/3 of the times whenever one of the qubits involved in the measurement is affected by bit-flip noise through the mere observation of unexpected outcomes in the teleportation and superdense coding protocols when compared to the ideal case. It is shown that the use of post-selection after the detection of noise leads to an enhancement in the efficiency of the protocols. The idea is extended to any protocol using entangled states and measurements. Furthermore, a generalization is provided in which GHZ states and measurements with an arbitrary amount of qubits are used instead of EPR pairs, and remarkably, it is concluded that the optimal number of qubits is only three.

[1]  Travis Norsen,et al.  Bell's theorem , 2011, Scholarpedia.

[2]  E. Knill Quantum computing with realistically noisy devices , 2005, Nature.

[3]  B. Terhal Quantum error correction for quantum memories , 2013, 1302.3428.

[4]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[5]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[6]  R Raussendorf,et al.  A one-way quantum computer. , 2001, Physical review letters.

[7]  A. Shimony,et al.  Bell’s theorem without inequalities , 1990 .

[8]  F. Melo,et al.  Optimal teleportation with a noisy source , 2011, 1102.1737.

[9]  Jstor Philosophical Transactions of the Royal Society of London (A) , 2011 .

[10]  Dong He,et al.  Satellite-based entanglement distribution over 1200 kilometers , 2017, Science.

[11]  R. Raussendorf Key ideas in quantum error correction , 2012, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[12]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[13]  W. Munro,et al.  Quantum error correction for beginners , 2009, Reports on progress in physics. Physical Society.

[14]  Jian-Wei Pan,et al.  Ground-to-satellite quantum teleportation , 2017, Nature.

[15]  Márcio M. Cunha,et al.  Non-ideal teleportation of tripartite entanglement: Einstein–Podolsky–Rosen versus Greenberger–Horne–Zeilinger schemes , 2017, Quantum Inf. Process..

[16]  M. Kafatos Bell's theorem, quantum theory and conceptions of the universe , 1989 .

[17]  Gustavo Rigolin,et al.  Fighting noise with noise in realistic quantum teleportation , 2015, 1506.03803.

[18]  Weinfurter,et al.  Dense coding in experimental quantum communication. , 1996, Physical review letters.

[19]  F. Brandão,et al.  Entanglement theory and the second law of thermodynamics , 2008, 0810.2319.

[20]  V. Vedral,et al.  Entanglement measures and purification procedures , 1997, quant-ph/9707035.

[21]  J. Eisert,et al.  Advances in quantum teleportation , 2015, Nature Photonics.

[22]  T. Beth,et al.  Codes for the quantum erasure channel , 1996, quant-ph/9610042.

[23]  DaeKil Park,et al.  Greenberger-Horne-Zeilinger versus W states: Quantum teleportation through noisy channels , 2008 .

[24]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[25]  A. Zeilinger,et al.  Going Beyond Bell’s Theorem , 2007, 0712.0921.

[26]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[27]  I. Chuang,et al.  Quantum Computation and Quantum Information: Bibliography , 2010 .

[28]  H. Weinfurter,et al.  Experimental quantum teleportation , 1997, Nature.

[29]  S. WEINTROUB,et al.  Reports on Progress in Physics , 1949, Nature.

[30]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.