Helical Polycyclic Heteroaromatic as Hole Transport Material for Perovskite Solar Cell: Remarkable Impact of Alkyl Substitution Position

[1]  N. Koch,et al.  Doping Approaches for Organic Semiconductors. , 2021, Chemical reviews.

[2]  Peng Wang,et al.  A spiro-OMeTAD based semiconductor composite with over 100 °C glass transition temperature for durable perovskite solar cells , 2021 .

[3]  Yiying Wu,et al.  Intramolecular Electric Field Construction in Metal Phthalocyanine as Dopant-Free Hole Transporting Material for Stable Perovskite Solar Cells with >21% Efficiency. , 2021, Angewandte Chemie.

[4]  Bumjoon J. Kim,et al.  Methoxy-Functionalized Triarylamine-Based Hole-Transporting Polymers for Highly Efficient and Stable Perovskite Solar Cells , 2020 .

[5]  Dong Suk Kim,et al.  Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss , 2020, Science.

[6]  H. Sirringhaus,et al.  Charge transport in high-mobility conjugated polymers and molecular semiconductors , 2020, Nature Materials.

[7]  Sean P. Dunfield,et al.  From Defects to Degradation: A Mechanistic Understanding of Degradation in Perovskite Solar Cell Devices and Modules , 2020, Advanced Energy Materials.

[8]  A. Jen,et al.  A Dopant‐Free Polymeric Hole‐Transporting Material Enabled High Fill Factor Over 81% for Highly Efficient Perovskite Solar Cells , 2019, Advanced Energy Materials.

[9]  Thuc‐Quyen Nguyen,et al.  Towards understanding the doping mechanism of organic semiconductors by Lewis acids , 2019, Nature Materials.

[10]  K. Müllen,et al.  Heteroatom-Doped Nanographenes with Structural Precision , 2019, Accounts of chemical research.

[11]  Z. Yin,et al.  Surface passivation of perovskite film for efficient solar cells , 2019, Nature Photonics.

[12]  T. Okujima,et al.  Synthesis and Redox Properties of Pyrrole- and Azulene-Fused Azacoronene. , 2019, Organic letters.

[13]  J. Noh,et al.  Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene) , 2019, Nature.

[14]  Zhenan Bao,et al.  Molecular parameters responsible for thermally activated transport in doped organic semiconductors , 2019, Nature Materials.

[15]  S. Fabiano,et al.  Double doping of conjugated polymers with monomer molecular dopants , 2019, Nature Materials.

[16]  Rongrong Cheacharoen,et al.  Understanding Degradation Mechanisms and Improving Stability of Perovskite Photovoltaics. , 2018, Chemical reviews.

[17]  K. Catchpole,et al.  Perovskite Solar Cells Employing Copper Phthalocyanine Hole-Transport Material with an Efficiency over 20% and Excellent Thermal Stability , 2018, ACS Energy Letters.

[18]  Bumjoon J. Kim,et al.  Sequentially Fluorinated PTAA Polymers for Enhancing VOC of High‐Performance Perovskite Solar Cells , 2018, Advanced Energy Materials.

[19]  Tae-Youl Yang,et al.  A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells , 2018, Nature Energy.

[20]  M. Stępień,et al.  Heterocyclic Nanographenes and Other Polycyclic Heteroaromatic Compounds: Synthetic Routes, Properties, and Applications. , 2017, Chemical reviews.

[21]  N. Park,et al.  Effect of Selective Contacts on the Thermal Stability of Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[22]  Ming Li,et al.  Zinc Porphyrin–Ethynylaniline Conjugates as Novel Hole-Transporting Materials for Perovskite Solar Cells with Power Conversion Efficiency of 16.6% , 2016 .

[23]  I. Han,et al.  Improving Performance and Stability of Flexible Planar‐Heterojunction Perovskite Solar Cells Using Polymeric Hole‐Transport Material , 2016 .

[24]  N. Koch,et al.  Molecular Electrical Doping of Organic Semiconductors: Fundamental Mechanisms and Emerging Dopant Design Rules. , 2016, Accounts of chemical research.

[25]  Vytautas Getautis,et al.  Enhancing Thermal Stability and Lifetime of Solid-State Dye-Sensitized Solar Cells via Molecular Engineering of the Hole-Transporting Material Spiro-OMeTAD. , 2015, ACS applied materials & interfaces.

[26]  M. Grätzel,et al.  Sequential deposition as a route to high-performance perovskite-sensitized solar cells , 2013, Nature.

[27]  K. Müllen,et al.  Pyrrole-fused azacoronene family: the influence of replacement with dialkoxybenzenes on the optical and electronic properties in neutral and oxidized states. , 2013, Journal of the American Chemical Society.

[28]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[29]  Daoben Zhu,et al.  Semiconducting π-conjugated systems in field-effect transistors: a material odyssey of organic electronics. , 2012, Chemical reviews.

[30]  Jan F. Schmidt,et al.  Reversible and irreversible interactions of poly(3-hexylthiophene) with oxygen studied by spin-sensitive methods. , 2011, The journal of physical chemistry. B.

[31]  Alexander Lukyanov,et al.  Microscopic Simulations of Charge Transport in Disordered Organic Semiconductors , 2011, Journal of chemical theory and computation.

[32]  C. Deibel,et al.  Oxygen doping of P3HT:PCBM blends: Influence on trap states, charge carrier mobility and solar cell performance , 2010, 1008.4230.

[33]  Jow-Tsong Shy,et al.  Dynamics and reversibility of oxygen doping and de-doping for conjugated polymer , 2008 .

[34]  K. Müllen,et al.  Annularly fused hexapyrrolohexaazacoronenes: an extended pi system with multiple interior nitrogen atoms displays stable oxidation states. , 2007, Angewandte Chemie.

[35]  K. Walzer,et al.  Highly efficient organic devices based on electrically doped transport layers. , 2007, Chemical reviews.

[36]  Jean-Luc Brédas,et al.  Charge transport in organic semiconductors. , 2007, Chemical reviews.

[37]  Michael Grätzel,et al.  Enhanced charge mobility in a molecular hole transporter via addition of redox inactive ionic dopant: Implication to dye-sensitized solar cells , 2006 .

[38]  B. Kippelen,et al.  Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60 , 2005 .

[39]  T. M. Klapwijk,et al.  Dopant density determination in disordered organic field-effect transistors , 2003 .

[40]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[41]  Yuji Wada,et al.  Solid State Dye-Sensitized TiO2 Solar Cell with Polypyrrole as Hole Transport Layer , 1997 .

[42]  H. Wohltjen,et al.  Electrical conductivity in phthalocyanines modulated by circularly polarized light , 1983, Nature.