EuclidNets: An Alternative Operation for Efficient Inference of Deep Learning Models

[1]  Hamza Ouarnoughi,et al.  Hardware-Aware Neural Architecture Search: Survey and Taxonomy , 2021, IJCAI.

[2]  Hamza Ouarnoughi,et al.  A Comprehensive Survey on Hardware-Aware Neural Architecture Search , 2021, ArXiv.

[3]  Chaojian Li,et al.  ShiftAddNet: A Hardware-Inspired Deep Network , 2020, NeurIPS.

[4]  Chang Xu,et al.  Kernel Based Progressive Distillation for Adder Neural Networks , 2020, NeurIPS.

[5]  D. Nikolaev,et al.  ResNet-like Architecture with Low Hardware Requirements , 2020, 2020 25th International Conference on Pattern Recognition (ICPR).

[6]  Xi Zhang,et al.  Additive neural network for forest fire detection , 2020, Signal Image Video Process..

[7]  Patrick Judd,et al.  Integer Quantization for Deep Learning Inference: Principles and Empirical Evaluation , 2020, ArXiv.

[8]  Chang Xu,et al.  AdderNet: Do We Really Need Multiplications in Deep Learning? , 2019, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[9]  Randy C. Paffenroth,et al.  Parameter Continuation Methods for the Optimization of Deep Neural Networks , 2019, 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA).

[10]  Vladimir V. Arlazarov,et al.  Bipolar morphological neural networks: convolution without multiplication , 2019, International Conference on Machine Vision.

[11]  Wenrui Hao,et al.  AN EFFICIENT HOMOTOPY TRAINING ALGORITHM FOR NEURAL NETWORKS , 2019 .

[12]  Shumeet Baluja,et al.  Table-Based Neural Units: Fully Quantizing Networks for Multiply-Free Inference , 2019, ArXiv.

[13]  Quoc V. Le,et al.  EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks , 2019, ICML.

[14]  Carole-Jean Wu,et al.  Machine Learning at Facebook: Understanding Inference at the Edge , 2019, 2019 IEEE International Symposium on High Performance Computer Architecture (HPCA).

[15]  Wenrui Hao,et al.  A homotopy training algorithm for fully connected neural networks , 2019, Proceedings of the Royal Society A.

[16]  Andrea Lodi,et al.  Activation Adaptation in Neural Networks , 2019, ICPRAM.

[17]  Soumendu Sundar Mukherjee,et al.  Morphological Network: How Far Can We Go with Morphological Neurons? , 2019, British Machine Vision Conference.

[18]  Bhabatosh Chanda,et al.  Dense Morphological Network: An Universal Function Approximator , 2018, ArXiv.

[19]  Shumeet Baluja,et al.  No Multiplication? No Floating Point? No Problem! Training Networks for Efficient Inference , 2018, ArXiv.

[20]  Yunhui Guo,et al.  A Survey on Methods and Theories of Quantized Neural Networks , 2018, ArXiv.

[21]  A. Enis Çetin,et al.  Non-Euclidean Vector Product for Neural Networks , 2018, 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[22]  Michael Carbin,et al.  The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks , 2018, ICLR.

[23]  Tao Zhang,et al.  Model Compression and Acceleration for Deep Neural Networks: The Principles, Progress, and Challenges , 2018, IEEE Signal Processing Magazine.

[24]  Tao Zhang,et al.  A Survey of Model Compression and Acceleration for Deep Neural Networks , 2017, ArXiv.

[25]  Junmo Kim,et al.  A Gift from Knowledge Distillation: Fast Optimization, Network Minimization and Transfer Learning , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[26]  Xiangyu Zhang,et al.  ShuffleNet: An Extremely Efficient Convolutional Neural Network for Mobile Devices , 2017, 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition.

[27]  George Papandreou,et al.  Rethinking Atrous Convolution for Semantic Image Segmentation , 2017, ArXiv.

[28]  A. Enis Çetin,et al.  Multiplication free neural network for cancer stem cell detection in H-and-E stained liver images , 2017, Commercial + Scientific Sensing and Imaging.

[29]  Bo Chen,et al.  MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications , 2017, ArXiv.

[30]  Farinaz Koushanfar,et al.  LookNN: Neural network with no multiplication , 2017, Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017.

[31]  Ross B. Girshick,et al.  Mask R-CNN , 2017, 1703.06870.

[32]  Philip S. Yu,et al.  HashNet: Deep Learning to Hash by Continuation , 2017, 2017 IEEE International Conference on Computer Vision (ICCV).

[33]  Forrest N. Iandola,et al.  SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <1MB model size , 2016, ArXiv.

[34]  Ran El-Yaniv,et al.  Binarized Neural Networks , 2016, ArXiv.

[35]  Hossein Mobahi,et al.  Training Recurrent Neural Networks by Diffusion , 2016, ArXiv.

[36]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[37]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[38]  Aysegul Uner,et al.  Multiplication-free Neural Networks , 2015, 2015 23nd Signal Processing and Communications Applications Conference (SIU).

[39]  Geoffrey E. Hinton,et al.  Distilling the Knowledge in a Neural Network , 2015, ArXiv.

[40]  Florent de Dinechin,et al.  Large multipliers with fewer DSP blocks , 2009, 2009 International Conference on Field Programmable Logic and Applications.

[41]  Fei-Fei Li,et al.  ImageNet: A large-scale hierarchical image database , 2009, 2009 IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Jason Weston,et al.  Curriculum learning , 2009, ICML '09.

[43]  Leon O. Chua,et al.  The comparative synapse: a multiplication free approach to neuro-fuzzy classifiers , 1999 .

[44]  Peter Sussner,et al.  An introduction to morphological neural networks , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[45]  Russell Reed,et al.  Pruning algorithms-a survey , 1993, IEEE Trans. Neural Networks.

[46]  L. Udpa,et al.  Homotopy continuation methods for neural networks , 1991, 1991., IEEE International Sympoisum on Circuits and Systems.

[47]  Gerhard X. Ritter,et al.  Theory of morphological neural networks , 1990, Photonics West - Lasers and Applications in Science and Engineering.

[48]  David A. Patterson,et al.  Computer Architecture: A Quantitative Approach , 1969 .

[49]  Sotirios A. Tsaftaris,et al.  Medical Image Computing and Computer-Assisted Intervention – MICCAI 2015 , 2015, Lecture Notes in Computer Science.

[50]  Alex Krizhevsky,et al.  Learning Multiple Layers of Features from Tiny Images , 2009 .

[51]  Christof Paar,et al.  Generalizations of the Karatsuba Algorithm for Efficient Implementations , 2006, IACR Cryptol. ePrint Arch..

[52]  E. Allgower,et al.  Introduction to Numerical Continuation Methods , 1987 .