Instantaneous Identification of Degrading Hysteretic Oscillators Under Earthquake Excitation

This article presents a technique for the structural identification of hysteretic oscillators that are characterized by degradation in stiffness. The main assumption of the proposed procedure is that it is possible to replace the expression of the time derivative of the restoring force with a polynomial approximation, characterized by time-varying coefficients. The work aims at generalizing a method that the authors have proposed for hysteretic nondegrading systems: system parameters are evaluated from instantaneous estimates of the time-varying coefficients. The instantaneous estimation, based on optimization techniques, is made possible through the temporal localization of frequency components, i.e., the representation in the joint time—frequency domain. A numerical application consisting of the instantaneous identification of a Bouc-Wen model with stiffness degradation under earthquake excitation is presented and discussed. Although the sensitivity of the estimation to exogenous noise is greater than in the nondegrading case, the global accuracy of the identification is satisfactory.

[1]  Andrew W. Smyth,et al.  Adaptive Parametric Identification Scheme for a Class of Nondeteriorating and Deteriorating Nonlinear Hysteretic Behavior , 2008 .

[2]  Elias B. Kosmatopoulos,et al.  Parametric and nonparametric adaptive identification of nonlinear structural systems , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).

[3]  Y. Wen Method for Random Vibration of Hysteretic Systems , 1976 .

[4]  Oreste S. Bursi,et al.  Bouc–Wen-Type Models with Stiffness Degradation: Thermodynamic Analysis and Applications , 2008, 0901.1448.

[5]  Elias B. Kosmatopoulos,et al.  Development of adaptive modeling techniques for non-linear hysteretic systems , 2002 .

[6]  C. Loh,et al.  A three-stage identification approach for hysteretic systems , 1993 .

[7]  Rosario Ceravolo,et al.  Change in dynamic parameters and safety assessment of civil structures , 2008 .

[8]  Silvano Erlicher,et al.  Thermodynamic admissibility of Bouc-Wen type hysteresis models , 2004 .

[9]  Wilfred D. Iwan,et al.  Nonlinear system identification based on modelling of restoring force behaviour , 1989 .

[10]  Greg Foliente,et al.  Hysteresis Modeling of Wood Joints and Structural Systems , 1995 .

[11]  Fabrizio Vestroni,et al.  IDENTIFICATION OF HYSTERETIC OSCILLATORS UNDER EARTHQUAKE LOADING BY NONPARAMETRIC MODELS , 1995 .

[12]  José Rodellar,et al.  Dynamic properties of the hysteretic Bouc-Wen model , 2007, Syst. Control. Lett..

[13]  Silvano Erlicher,et al.  Pseudopotentials and Loading Surfaces for an Endochronic Plasticity Theory with Isotropic Damage , 2008 .

[14]  Yoshiyuki Suzuki,et al.  Improvement Of Parameter Estimation for Non-Linear Hysteretic Systems With Slip By A Fast Bayesian Bootstrap Filter , 2004 .

[15]  M. V. Sivaselvan,et al.  Hysteretic models for deteriorating inelastic structures , 2000 .

[16]  Armen Der Kiureghian,et al.  Generalized Bouc-Wen model for highly asymmetric hysteresis , 2006 .

[17]  Fabio Casciati,et al.  Stochastic dynamics of hysteretic media , 1989 .

[18]  Andrew W. Smyth,et al.  Real-time parameter estimation for degrading and pinching hysteretic models , 2008 .

[19]  Rosario Ceravolo,et al.  Developments and Comparisons on the Definition of an Instantaneous Damping Estimator for Structures under Natural Excitation , 2001 .

[20]  S. Masri,et al.  Identification of the state equation in complex non-linear systems , 2004 .

[21]  Bruno Torrésani,et al.  Practical Time-Frequency Analysis , 1998 .

[22]  R. Ceravolo Use of instantaneous estimators for the evaluation of structural damping , 2004 .

[23]  V. Koumousis,et al.  On the response and dissipated energy of Bouc-Wen hysteretic model , 2008 .

[24]  H. Zhang,et al.  Parameter Analysis of the Differential Model of Hysteresis , 2004 .

[25]  M. Yar,et al.  Parameter estimation for hysteretic systems , 1987 .

[26]  P. Frank Pai,et al.  Time-Frequency Method for Nonlinear System Identification and Damage Detection , 2008 .

[27]  Andrei M. Reinhorn,et al.  Modeling of Masonry Infill Panels for Structural Analysis , 1995 .

[28]  Silvano Erlicher,et al.  Endochronic theory, non-linear kinematic hardening rule and generalized plasticity : a new interpretation based on generalized normality assumption , 2006, 0812.1884.

[29]  Sami F. Masri,et al.  Adaptive methods for identification of hysteretic structures , 1995, Proceedings of 1995 American Control Conference - ACC'95.

[30]  Rosario Ceravolo,et al.  Instantaneous Identification of Bouc-Wen-Type Hysteretic Systems from Seismic Response Data , 2007 .

[31]  Elias B. Kosmatopoulos,et al.  Analysis and modification of Volterra/Wiener neural networks for the adaptive identification of non-linear hysteretic dynamic systems , 2004 .

[32]  Silvano Erlicher,et al.  Pseudopotentials and Loading Surfaces for an Endochronic Plasticity Theory with Isotropic Damage , 2008, 0901.1447.

[33]  Yi-Qing Ni,et al.  IDENTIFICATION OF NON-LINEAR HYSTERETIC ISOLATORS FROM PERIODIC VIBRATION TESTS , 1998 .

[34]  Rosario Ceravolo,et al.  Time–Frequency Analysis , 2009 .

[35]  Yongmin Yang,et al.  Parameter identification of inelastic structures under dynamic loads , 2002 .

[36]  Andrew W. Smyth,et al.  On-Line Parametric Identification of MDOF Nonlinear Hysteretic Systems , 1999 .

[37]  Keith Worden,et al.  IDENTIFICATION OF HYSTERETIC SYSTEMS USING THE DIFFERENTIAL EVOLUTION ALGORITHM , 2001 .

[38]  W. Iwan A Distributed-Element Model for Hysteresis and Its Steady-State Dynamic Response , 1966 .

[39]  Andrew W. Smyth,et al.  Application of the unscented Kalman filter for real‐time nonlinear structural system identification , 2007 .

[40]  Gregory D. Buckner,et al.  An intelligent parameter varying (IPV) approach for non-linear system identification of base excited structures , 2004 .

[41]  J. Beck,et al.  Bayesian State and Parameter Estimation of Uncertain Dynamical Systems , 2006 .