The Composite Genome of the Legume Symbiont Sinorhizobium meliloti

The scarcity of usable nitrogen frequently limits plant growth. A tight metabolic association with rhizobial bacteria allows legumes to obtain nitrogen compounds by bacterial reduction of dinitrogen (N2) to ammonium (NH4 +). We present here the annotated DNA sequence of the α-proteobacteriumSinorhizobium meliloti, the symbiont of alfalfa. The tripartite 6.7-megabase (Mb) genome comprises a 3.65-Mb chromosome, and 1.35-Mb pSymA and 1.68-Mb pSymB megaplasmids. Genome sequence analysis indicates that all three elements contribute, in varying degrees, to symbiosis and reveals how this genome may have emerged during evolution. The genome sequence will be useful in understanding the dynamics of interkingdom associations and of life in soil environments.

[1]  Ian T. Paulsen,et al.  Complete genome sequence of Caulobacter crescentus , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[2]  H. Hennecke,et al.  Potential Symbiosis-Specific Genes Uncovered by Sequencing a 410-Kilobase DNA Region of the Bradyrhizobium japonicum Chromosome , 2001, Journal of bacteriology.

[3]  Jeffrey M. Skerker,et al.  Identification and cell cycle control of a novel pilus system in Caulobacter crescentus , 2000, The EMBO journal.

[4]  I. Oresnik,et al.  Megaplasmid pRme2011a of Sinorhizobium meliloti Is Not Required for Viability , 2000, Journal of bacteriology.

[5]  W. Broughton,et al.  Molecular Basis of Symbiotic Promiscuity , 2000, Microbiology and Molecular Biology Reviews.

[6]  W. Broughton,et al.  Host-plant invasion by rhizobia. , 2000, Sub-cellular biochemistry.

[7]  Y. Nakamura,et al.  Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. , 2000, DNA research : an international journal for rapid publication of reports on genes and genomes.

[8]  B. Beutler,et al.  Phylogenetic variation and polymorphism at the Toll-like receptor 4 locus (TLR4) , 2000, Genome Biology.

[9]  S. Farrand,et al.  Production of acyl-homoserine lactone quorum-sensing signals by gram-negative plant-associated bacteria. , 1998, Molecular plant-microbe interactions : MPMI.

[10]  A. Bairoch,et al.  Molecular basis of symbiosis between Rhizobium and legumes , 1997, Nature.

[11]  M. S. Zubairy,et al.  Quantum optics: Dedication , 1997 .

[12]  A. Matthysse,et al.  Requirement for genes with homology to ABC transport systems for attachment and virulence of Agrobacterium tumefaciens , 1996, Journal of bacteriology.

[13]  J. Schwedock,et al.  Rhizobium meliloti genes involved in sulfate activation: the two copies of nodPQ and a new locus, saa. , 1992, Genetics.

[14]  D. Piñero,et al.  Reiterated DNA sequences in Rhizobium and Agrobacterium spp , 1987, Journal of bacteriology.

[15]  D. Kahn,et al.  Transcription patterns of Rhizobium meliloti symbiotic plasmid pSym: identification of nifA-independent fix genes , 1987, Journal of bacteriology.

[16]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[17]  B. Bainbridge,et al.  Genetics , 1981, Experientia.