The generation of a steroid library using filamentous fungi immobilized in calcium alginate

[1]  W. Reynolds,et al.  The facile bioconversion of testosterone by alginate-immobilised filamentous fungi , 2013 .

[2]  W. Reynolds,et al.  Entrapment of mycelial fragments in calcium alginate: A general technique for the use of immobilized filamentous fungi in biocatalysis , 2012, Steroids.

[3]  A. Lamm,et al.  Steroid hydroxylation by Whetzelinia sclerotiorum, Phanerochaete chrysosporium and Mucor plumbeus , 2007, Steroids.

[4]  F. Roussi,et al.  The Design and Synthesis of New Steroidal Compounds as Potential Mimics of Taxoids , 2005 .

[5]  A. Lamm,et al.  Stemodane and stemarane diterpenoid hydroxylation by Mucor plumbeus and Whetzelinia sclerotiorum. , 2005, Phytochemistry.

[6]  Atta-ur-rahman,et al.  Biotransformation of (+)-androst-4-ene-3,17-dione , 2004, Natural product research.

[7]  V. Nigam,et al.  Continuous Production of Cephalosporin‐C by Immobilized Microbial Cells Using Symbiotic Mode in a Packed Bed Bioreactor , 2003, Artificial cells, blood substitutes, and immobilization biotechnology.

[8]  P. Reese,et al.  Steroid transformations with Fusarium oxysporum var. cubense and Colletotrichum musae , 1999, Steroids.

[9]  J. A. Scott,et al.  Defined coimmobilization of mixed microorganism cultures , 1995 .

[10]  R. Azerad,et al.  Microbial transformation of steroids: Contribution to 14α-hydroxylations , 1995, Steroids.

[11]  R. Rogers,et al.  Preparation, characterization, and antiviral activity of microbial metabolites of stemodin. , 1991, Journal of natural products.

[12]  Y. Khang,et al.  Enhanced β-lactam antibiotic production by coimmobilization of fungus and alga , 1988, Biotechnology Letters.

[13]  B. Mattiasson,et al.  Oxygen supply to immobilized cells : 1. Oxygen production by immobilized Chlorella pyrenoidosa , 1982 .

[14]  K. Mosbach,et al.  Formation of α-keto acids from amino acids using immobilized bacteria and algae , 1982, Biotechnology Letters.

[15]  E. Chambaz,et al.  Microbiological 7- and 15-hydroxylations of C-19 steroids. , 1978, Journal of steroid biochemistry.

[16]  H. Tada,et al.  Preparation of A-Ring conjugated enones and the corresponding alpha, beta-epoxy ketones of 17beta-acetoxy-5alpha-androstane. , 1968, The Journal of organic chemistry.

[17]  H. Metz,et al.  Darstellung von 7α‐Hydroxy‐ und 7α‐Methoxytestosteron‐Derivaten , 1964 .

[18]  R. Dodson,et al.  Microbiological Transformations. VIII. The Oxidation of Androstenedione at C-16 , 1962 .

[19]  M. J. Weiss,et al.  The Synthesis of Certain 7α-Alkylthio and 7α-Acylthio Steroid Hormone Derivatives , 1961 .

[20]  R. Dodson,et al.  Microbiological Transformations. IV. The Oxidation of Dehydroisoandrosterone at C-7 , 1959 .

[21]  J. Bolte,et al.  Use of biological systems for the preparation of chiral molecules. 3. Application in pheromone synthesis: preparation of sulcatol enantiomers , 1987 .

[22]  A. Wettstein Über Steroide. (24. Mitteilung). Über Δ4;6-3-Ketone der Androstan- und Pregnan-Reihe , 1940 .