A Geometrical Representation of the Basic Laws of Categorial Grammar

We present a geometrical analysis of the principles that lay at the basis of Categorial Grammar and of the Lambek Calculus. In Abrusci (On residuation, 2014) it is shown that the basic properties known as Residuation laws can be characterized in the framework of Cyclic Multiplicative Linear Logic, a purely non-commutative fragment of Linear Logic. We present a summary of this result and, pursuing this line of investigation, we analyze a well-known set of categorial grammar laws: Monotonicity, Application, Expansion, Type-raising, Composition, Geach laws and Switching laws.

[1]  J. Girard,et al.  1 A topological correctness criterion for multiplicative non-commutative logic , 2016 .

[2]  Wojciech Buszkowski,et al.  Nonassociative Lambek Calculus with Additives and Context-Free Languages , 2009, Languages: From Formal to Natural.

[3]  V. Michele Abrusci Classical Conservative Extensions of Lambek Calculus , 2002, Stud Logica.

[4]  J. Lambek The Mathematics of Sentence Structure , 1958 .

[5]  V. Michele Abrusci Phase Semantics and Sequent Calculus for Pure Noncommutative Classical Linear Propositional Logic , 1991, J. Symb. Log..

[6]  Paul Ruet,et al.  Non-Commutative Logic I: The Multiplicative Fragment , 1999, Ann. Pure Appl. Log..

[7]  Wojciech Buszkowski,et al.  Syntactic Categories and Types: Ajdukiewicz and Modern Categorial Grammars , 2016 .

[8]  Michael Moortgat,et al.  Proof nets for the Lambek-Grishin calculus , 2011, Quantum Physics and Linguistics.

[9]  Joachim Lambek,et al.  A Tale of Four Grammars , 2002, Stud Logica.

[10]  J. Lambek From Rules of Grammar to Laws of Nature , 2014 .

[11]  Michael Moortgat,et al.  Categorial Type Logics , 1997, Handbook of Logic and Language.

[12]  Glyn Morrill,et al.  A Categorial Type Logic , 2014, Categories and Types in Logic, Language, and Physics.

[13]  Joachim Lambek,et al.  Logic and Grammar , 2012, Stud Logica.

[14]  V. Michele Abrusci On Residuation , 2014, Categories and Types in Logic, Language, and Physics.

[15]  Wojciech Buszkowski Lambeck calculus and substructural logics , 2010 .

[16]  Michael Moortgat Symmetric categorial grammar: residuation and Galois connections , 2010, ArXiv.

[17]  Wojciech Buszkowski,et al.  Type Logics and Pregroups , 2007, Stud Logica.

[18]  Michael Moortgat,et al.  Continuation semantics for the Lambek-Grishin calculus , 2010, Inf. Comput..